Inverse parabolic problems

  • Victor Isakov
Part of the Applied Mathematical Sciences book series (AMS, volume 127)

Abstract

In this chapter we consider the second-order parabolic equation
$$ {a_0}{\partial _t}u - div(a\nabla u) + b\nabla u + cu = f{\mkern 1mu} in{\mkern 1mu} Q = \Omega \times (0,{\mkern 1mu} T), $$
(9.0.1)
where Ω is a bounded domain the space ℝ n with the C 2-smooth boundary ∂Ω. In Section 9.5 we study the nonlinear equation
$$ {a_0}(x,u){u_t} - \Delta u + c(x,{\mkern 1mu} t,{\mkern 1mu} u) = 0{\mkern 1mu} in{\mkern 1mu} Q. $$
(9.0.1n)

Keywords

Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Victor Isakov
    • 1
  1. 1.Department of Mathematics and StatisticsThe Wichita State UniversityWichitaUSA

Personalised recommendations