Skip to main content

Basics of TensorFlow

  • Chapter
  • First Online:
Deep Learning with Applications Using Python
  • 13k Accesses

Abstract

This chapter covers the basics of TensorFlow, the deep learning framework. Deep learning does a wonderful job in pattern recognition, especially in the context of images, sound, speech, language, and time-series data. With the help of deep learning, you can classify, predict, cluster, and extract features. Fortunately, in November 2015, Google released TensorFlow, which has been used in most of Google’s products such as Google Search, spam detection, speech recognition, Google Assistant, Google Now, and Google Photos. Explaining the basic components of TensorFlow is the aim of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 62.99
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 81.74
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Navin Kumar Manaswi

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manaswi, N.K. (2018). Basics of TensorFlow. In: Deep Learning with Applications Using Python . Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-3516-4_1

Download citation

Publish with us

Policies and ethics