Skip to main content

Introduction to PyTorch

  • Chapter
  • First Online:
Deep Learning with Python

Abstract

In this chapter, we will cover PyTorch which is a more recent addition to the ecosystem of the deep learning framework. PyTorch can be seen as a Python front end to the Torch engine (which initially only had Lua bindings) which at its heart provides the ability to define mathematical functions and compute their gradients. PyTorch has fairly good Graphical Processing Unit (GPU) support and is a fast-maturing framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Nikhil Ketkar

About this chapter

Cite this chapter

Ketkar, N. (2017). Introduction to PyTorch. In: Deep Learning with Python. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-2766-4_12

Download citation

Publish with us

Policies and ethics