Advertisement

5G Technologies

  • Biljana Badic
  • Christian Drewes
  • Ingolf Karls
  • Markus Mueck
Chapter

Abstract

There are many questions surrounding 5G’s key features, so in this chapter we will answer some important ones in an organized way to provide the most recent information on the progress of 5G.

Keywords

Heterogeneous Network Radio Access Software Define Networking Software Define Radio Radio Access Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1.  1.
    References Samsung Electronics Sets 5G Speed Record at 7.5Gbps, Over 30 Times Faster than 4G LTE. Retrieved from Samsung: http://www.samsung.com/uk/news/local/samsung-electronics-sets-5g-speed-record-at-7-5gbps-over-30-times-faster-than-4g-lte, October 2014.
  2.  2.
    Tafazolli, “5G speeds of 1Tbps have been achieved during tests”. Retrieved from University of Surrey: http://www.v3.co.uk/v3-uk/news/2396249/exclusive-university-of-surrey-achieves-5g-speeds-of-1tbps, Feb 2015
  3.  3.
    R. El Hattachi, J. E. 5G White paper. NGMN, 2015Google Scholar
  4.  4.
    Future Mobile Spectrum Requirements, GSMA Report, 2015Google Scholar
  5.  5.
  6.  6.
    RAN 5G Workshop. Retrieved from 3GPP: http://www.3gpp.org/news-events/3gpp-news/1734-ran_5g
  7.  7.
  8.  8.
    4G Americas “Recommendations on 5G Requirements and Solutions”, White paper, October 2014.Google Scholar
  9.  9.
    Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2014-2019” White Paper, May 2015.Google Scholar
  10. 10.
    3GPP, “LTE-Advanced Pro Ready to Go”, http://www.3gpp.org/news-events/3gpp-news/1745-lte-advanced_pro, October 2015
  11. 11.
    Parkvall, S. Heterogeneous Network Deployments in LTE. Ericsson Review, pp. 34–37.Google Scholar
  12. 12.
    H. Ishii, Y. K. A Novel Architecture for LTE-B. C-plane/U-plane Split and Phantom Cell Concept. GC'12 Workshop: International Workshop on Emerging Technologies for LTE-Advanced and Beyond-4G (pp. 624–630). IEEE.Google Scholar
  13. 13.
    Weiler, R. J at all. Enabling 5G Backhaul and Access with millimeter-waves. IEEE.Google Scholar
  14. 14.
    METIS Project. Retrieved from METIS Project: https://www.metis2020.com/
  15. 15.
    METIS II. Retrieved from METIS II: https://metis-ii.5g-ppp.eu/
  16. 16.
    S. C. Jha, K. S. Dual Connectivity in LTE Small Cell Networks. Globecom Workshop -Heterogeneous and Small Cell Networks (pp. 1205–1210).Google Scholar
  17. 17.
    H. Peng, T. Y. Extended User/Control Plane Architectures for Tightly Coupled LTE/WiGig Interworking in Millimeter-wave Heterogeneous Networks. IEEE Wireless Communications and Networking Conference (WCNC): - Track 3: Mobile and Wireless Networks (pp. 1548–1553).Google Scholar
  18. 18.
    A. Zakrzewska, D. L.-P. Dual Connectivity in LTE HetNets with Split Control- and User-Plane. Globecom 2013 Workshop - Broadband Wireless Access (pp. 391–396). Atlanta, GA: IEEE.Google Scholar
  19. 19.
    ETSI. Applications and use cases of millimeter wave transmission (ETSI GS mWT 002 V1.1.1). ETSI.Google Scholar
  20. 20.
    al., V. J. Backhaul Requirements for Inter-Site Cooperation in Heterogeneous LTE-Advanced Networks. IEEE ICC (pp. 905–910). IEEE.Google Scholar
  21. 21.
    K. Zhen, L. Z. 10 Gb/s HetSNets with Millimeter-Wave Communications: Access and Networking – Challenges and Protocols. IEEE Communications Magazine, pp. 222–231.Google Scholar
  22. 22.
    3GPP, “Applications and use cases of millimeter wave transmission”, 3GPP 2015Google Scholar
  23. 23.
    Future Mobile Spectrum Requirements, GSMA Report, 2015Google Scholar
  24. 24.
    Management of opportunistic networks through cognitive functionalities, J. Gebert, A. Georgakopoulos, D. Karvounas, V. Stavroulaki, P. Demestichas, 9th Annual Conference on Wireless On-demand Network Systems and Services (WONS), 2012Google Scholar
  25. 25.
    Opportunistic networks for efficient application provisioning in the Future Internet: Business scenarios and technical challenges, A. Georgakopoulos, V. Stavroulaki, J. Gebert, O. Moreno, O. Sallent, M. Matinmikko, M. Filo, D. Boskovic, M. Tosic, M. Mueck, C. Mouton, P. Demestichas, Future Network & Mobile Summit (FutureNetw), 2011Google Scholar
  26. 26.
    NGMN 5G White Paper, Next Generation Mobile Networks Alliance (NGMN), 2015Google Scholar
  27. 27.
    DIRECTIVE 2014/53/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 April 2014 on the harmonization of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/ECGoogle Scholar
  28. 28.
    ETSI EN 303 095: Reconfigurable Radio Systems (RRS); Radio Reconfiguration related Architecture for Mobile Devices, ETSI, 2015Google Scholar
  29. 29.
    ETSI TR 102 967: Reconfigurable Radio Systems (RRS); Use Cases for dynamic equipment reconfiguration, ETSI, 2015Google Scholar
  30. 30.
    3GPP, “Mobile-Edge Computing – Introductory”, Technical White Paper, Sept 2015Google Scholar
  31. 31.
    Choi, Yang-Seok; Shirani-Mehr, H., “Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance”, IEEE Transactions on Wireless Communications, 2013Google Scholar
  32. 32.
  33. 33.
    Intel, “Developing High-Performance Flexible SDN & NFV Solutions with Intel Open Network Platform Server Reference Architecture”, 2013Google Scholar

Copyright information

© Intel Corp. 2016

Authors and Affiliations

  • Biljana Badic
    • 1
  • Christian Drewes
    • 1
  • Ingolf Karls
    • 1
  • Markus Mueck
    • 1
  1. 1.Intel Deutschland GmbHMUNICHGermany

Personalised recommendations