Neuropsychological Evidence for Localisation of Visual Sensory Functions

  • J. T. L. Wilson
  • G. N. Dutton
  • K. D. Wiedmann


Over recent years there has been a considerable advance in our understanding of the organisation of the cerebral cortex. It is now widely accepted that the visual cortex is subdivided into a number of areas each of which selectively analyses a particular stimulus attribute (Van Essen, 1979; Zeki, 1978). The evidence for this view derives almost entirely from neurophysiological and neuroanatomical studies. In contrast, neuropsychological evidence for localisation of sensory functions remains sparse: there have only been isolated reports of patients with specific visual sensory deficits. Yet such evidence is of particular significance since it serves to provide information not only about cortical functions, but also about the specific manner in which the human cortex is organised. Neuropsychological studies may therefore serve as a bridge between neurophysiological or neuroanatomical conceptions of functional organisation and our understanding of human visual functions. The purpose of this chapter is to consider selectively the neuropsychological evidence and examine its implications for current views of cortical organisation. In addition we will also describe and discuss a patient who shows a perceptual impairment in the ability to perceive vertical contour.


Visual Cortex Occipital Lobe Movement Perception Colour Perception Colour Constancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anstis, S.M. (1978). Apparent motion. in: R. Held, H.W. Leibowitz & H.L. Teuber (eds.). Handbook of Sensory Physiology (Vol.7) Perception. Berlin: Springer.Google Scholar
  2. Bailey, P. & von Bonin, G. (1951). The Isocortex of Man. Urbana: University of Illinois Press.Google Scholar
  3. Barlow, H.B. (1981). Critical limiting factors in the design of the eye and visual cortex. Proceedings of the Royal Society of London, B212, 1–34.PubMedCrossRefGoogle Scholar
  4. Blakemore, C. & Campbell, F.W. (1969). On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology, London, 203, 237–260.Google Scholar
  5. Braddick, O. (1974). A short-range process in apparent motion. Vision Research, 14, 519–527.PubMedCrossRefGoogle Scholar
  6. Danta, G., Hilton, R.C. & O’Boyle, D.J. (1978). Hemisphere function and binocular depth perception. Brain, 101, 569–589.PubMedCrossRefGoogle Scholar
  7. De Renzi, E. (1982). Disorders of Space Exploration and Cognition, Chichester: Wiley.Google Scholar
  8. Efron, R. (1968). What is perception? Boston Studies in the Philosophy of Science. New York: Humanities Press Inc.Google Scholar
  9. Holmes, G. 1918 ). Disturbances of visual orientation. British Journal of Ophthalmology, 2, 449–468; 506–516.PubMedCrossRefGoogle Scholar
  10. Kaas, J.H. (1987). The organisation of neocortex in mammals: implications for theories of brain function. Annual Review of Psychology, 38, 129–151.PubMedCrossRefGoogle Scholar
  11. Maunsell, J.H.R. & Van Essen, D.C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 5, 1127–1147.Google Scholar
  12. Meadows, J.C. (1974). Disturbed perception of colours associated with localised cerebral lesions. Brain, 97, 615–632.PubMedCrossRefGoogle Scholar
  13. Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6, 414–417.CrossRefGoogle Scholar
  14. Mollon, J.D., Newcombe, F., Polden, P.G. & Ratcliff, G. (1980). On the presence of three cone mechanisms in a case of total achromatopsia. in: G. Verriest (ed.). Colour Vision Deficiencies. Bristol: Hilger.Google Scholar
  15. Newcombe, F., Ratcliff, G. & Damasio, H. (1987). Dissociable visual and spatial impairments following right posterior cerebral lesions: clinical, neuropsychological and anatomical evidence. Neuropsychologia, 25, 149–161.PubMedCrossRefGoogle Scholar
  16. Newcombe, F. & Russell, W.R. (1969). Dissociated visual perceptual and spatial deficits in focal lesions of the right hemisphere. Journal of Neurology, Neurosurgery and Psychiatry, 32, 73–81.CrossRefGoogle Scholar
  17. Pearlman, A.L., Birch, J. & Meadows, J.C. (1979). Cerebral colour blindness: an acquired defect of hue discrimination. Annals of Neurology, 5, 253–261.PubMedCrossRefGoogle Scholar
  18. Phillips, C.G. Zeki, S.M. & Barlow, H.B. (1984). Localisation of function in the cerebral cortex: past, present and future. Brain, 107, 327–361.PubMedCrossRefGoogle Scholar
  19. Poeppel, E., Brinkman, R., von Cramon, D. & Singer, W. (1978). Association and dissociation of visual functions in a case of occipital lobe infarction. Archiv fuer Psychiatrie and Nervenkrankenheiten, 225, 1–21.CrossRefGoogle Scholar
  20. Poeppel, E., Held, R. & Frost, D. (1973). Residual visual function after brain wounds involving the central visual pathways in man. Nature, London, 243, 295–296.CrossRefGoogle Scholar
  21. Ratcliff, G. & Davies-Jones, G.A.B. (1972). Defective visual localisation in focal brain wounds. Brain, 95, 49–60.PubMedCrossRefGoogle Scholar
  22. Regan, D. & Maxner, C. (1987). Orientation selective visual loss in patients with Parkinson’s disease. Brain, 110, 415–432.PubMedCrossRefGoogle Scholar
  23. Riddoch, G. (1917). Dissociation of visual perceptions due to occipital injuries with especial reference to appreciation of movement. Brain, 40, 15–57.CrossRefGoogle Scholar
  24. Sprague, J.M., Hughes, H.C. & Berlucchi, G. (1981). Cortical mechanisms in pattern and form perception. in: O. Pompeiano & C. Ajmone Marsan (eds.). Brain Mechanisms and Perceptual Awareness. New York: Raven Press.Google Scholar
  25. Ungerleider, L. & Mishkin, M. (1982). Two cortical visual systems. in: D.J. Ingle, R.J.W. Mansfield & M.S. Goodale (eds.). The Analysis of Visual Behaviour. Cambridge, Mass.: MIT Press.Google Scholar
  26. Van Essen, D.C. (1979). Visual areas of the mammalian cerebral cortex. Annual Review of Newuroscience, 2, 227–263.CrossRefGoogle Scholar
  27. Van Essen, D.C. & Maunsell, J.H.R. (1983). Hierarchical organisation and functional streams in the visual cortex. Trends in Neurosciences, 6, 370–375.CrossRefGoogle Scholar
  28. Walsh, K.W. (1985). Understanding Brain Damage. Edinburgh: Churchill Livingstone.Google Scholar
  29. Warrington, E.K. (1985). Visual deficits associated with occipital lobe lesions in man. in: C. Chagas, R. Gatass & C. Gross (eds.). Pattern Recognition Mechanisms. Berlin: Springer.Google Scholar
  30. Warrington, E.K. & Taylor, A.M. (1973). Contribution of right parietal lobe to object recognition. Cortex, 9, 152–164.PubMedGoogle Scholar
  31. Weiskrantz, L. (1987). Residual vision in a scotoma. Brain, 110, 77–92.PubMedCrossRefGoogle Scholar
  32. Weiskrantz, L., Warrington, E.K., Sanders, M.D. & Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97, 709–728.PubMedCrossRefGoogle Scholar
  33. Wild, H.M., Butler, S.R., Carden, D. & Kulikowski, J.J. (1985). Primate cortical area V4 important for colour constancy but not wavelength discrimination. Nature, London, 313, 133–135.CrossRefGoogle Scholar
  34. Wilson, J.T.L. & Singer, W. (1981). Simultaneous visual events show a long-range interaction. Perception and Psychophysics, 30, 107–113.PubMedCrossRefGoogle Scholar
  35. Zeki, S.M. (1974). Functional organisation of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, London, 236, 549–573.Google Scholar
  36. Zeki, S.M. (1977). Colour coding in the superior temporal sulcus of the rhesus monkey visual cortex. Proceedings of the Royal Society of London, B197, 195–223.Google Scholar
  37. Zeki, S.M. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate cortex. Journal of Physiology, London, 277, 273–290.Google Scholar
  38. Zihl, J. (1980). ‘Blindsight’: improvement of visually guided eye movements by systematic practice in patients with cerebral blindness. Neuropsychologia, 18, 71–77.Google Scholar
  39. Zihl, J., Von Cramon, D. & Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain, 106, 313–340.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. T. L. Wilson
  • G. N. Dutton
  • K. D. Wiedmann

There are no affiliations available

Personalised recommendations