Dementia: Cerebral Blood Flow (SPECT) Correlates of Cognitive Impairment

  • D. M. Parker
  • J. R. Crawford
  • J. A. O. Besson
  • H. G. Gemmel
  • P. F. Sharp


Since cerebral perfusion is related to cerebral metabolism, measurement of cerebral blood flow (CBF) provides a useful index of cerebral function (Raichle et al., 1976). There are several techniques currently available for imaging CBF using radioactive labelled pharmaceuticals. The available techniques may be conveniently divided into two classes which use either single-photon-emitting radionuclides or dual-photon-emitting radionuclides. The former class includes compounds such as 133-xenon, 123-iodine and 99m-technetium which emit a single photon for each nuclear disintegration and these are used for singlephoton-emission computerised tomography (SPELT). The latter class, such as 15-oxygen and 18-fluorine, emit a positron per disintegration and this in turn produces two photons; these are used in positron emission tomography (PET). The attraction of PET is that a wide range of biologically relevant compounds can be labelled enabling studies of selective metabolism to be carried out. It is expensive, however, because specialised equipment is required for both radiopharmaceutical production and imaging. Although a much more limited range of radiopharmaceuticals is available for SPECT, the technique can be carried out on a routine basis in most nuclear medicine departments and so is relatively inexpensive. In the present chapter we will briefly review SPECT and other single-photon techniques with particular reference to their contribution to the neuropsychology of dementia and then move on to discuss the results of some of our own recent studies.


Cerebral Blood Flow Cerebral Perfusion Regional Cerebral Blood Flow Single Photon Emission Tomography Perfusion Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Black, F.W. & Strub, R.L. (1976). Constructional apraxia in patients with discrete missile wounds of the brain. Cortex, 12, 212–220.PubMedGoogle Scholar
  2. Celsis, P., Agniel, A., Puel, M., Rascol, A. & Marc-Vergas, J.P. (1987). Focal cerebral hypoperfusion and selective cognitive deficits in dementia of the Alzheimer type. Journal of Neurology, Neurosurgery and Psychiatry, 50, 1602–1612.CrossRefGoogle Scholar
  3. Chase, T.N., Brooks, R.A., Di Chiro, G., Fedio, P., Foster, N.L., Kessler, R.A., Mansi, L., Manning, R.G. & Patronas. N.J. (1982). Focal cortical abnormalities in Alzheimer’s disease. in: I. Greitz (ed.), The Metabolism of the Human Brain studied by Positron Emission Tomography. New York: Raven Press.Google Scholar
  4. Coolidge, F.L., Peters, B.M., Brown, R.E., Harsch, T.L. & Crookes, T.G. (1985). Validation of a WAIS algorithm for the early onset of dementia. Psychological Reports, 57, 1299–1302.PubMedCrossRefGoogle Scholar
  5. De Renzi, E., Faglioni, P. & Previdi, P. (1977). Spatial memory and hemispheric locus of lesion. Cortex, 13, 424–433.PubMedGoogle Scholar
  6. Derousne, C., Rancurel, G., Le Poucin Lafitte, M., Rapin, J.R. & Lassen, N.A. (1985). Variability of cerebral blood flow deficits in Alzheimer’s disease on 123-iodoisopropyl-amphetamine and single photon emission tomography. Lancet, i, 1282.Google Scholar
  7. Folstein, M.F., Folstein, S.E. & McHugh, P.R. (1975). Mini Mental State: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.PubMedCrossRefGoogle Scholar
  8. Freyhan, F.A., Woodford, R.B. & Kety, S.S. (1951). Cerebral blood flow and metabolism in the psychosis of senility. Journal of Nervous and Mental Disease, 113, 449–459.PubMedGoogle Scholar
  9. Friedland, R.P., Jagust, W.J., Budinger, T.F., Berkeley, C.A., Koss, E., Davis, C.A., Ober, B.A. & Martinez, C.A. (1987). Consistency of tempero-parietal cortex hypometabolism in probable Alzheimer’s disease (AD): relationship to cognitive decline. Neurology, 37, Suppl. 1, 224.Google Scholar
  10. Gemmell, H.G., Sharp, P.F., Evans, N.T.S., Besson, J.A.O., Lyall, D. & Smith, F.W. (1984). Single photon emission tomography with I-123 isopropylamphetamine in Alzheimers disease and multi-infarct dementia. Lancet, ii, 1348.Google Scholar
  11. Gemmell, H.G., Sharp, P.F., Besson, J.A.O., Crawford, J.R., Ebmeier, K.P., Davidson, J. & Smith, F.W. (1987). Differential diagnosis of dementia using the cerebral blood flow agent 99m Tc HM-PAO: a SPECT study. Journal of Computer Assisted Tomography, 11, 398–402.PubMedCrossRefGoogle Scholar
  12. Glen, A.I.M. & Christie, J.E. (1979). Early diagnosis of Alzheimer’s disease: working definitions for clinical and laboratory criteria. in: A.I.M. Glen, L.J. Whalley (eds), Alzheimer’s Disease: Early Recognition and Potentially Reversible Deficits. Edinburgh: Churchill Livingstone.Google Scholar
  13. Goldenberg, G., Podreka, I., Hoell, K. & Steiner, M. (1986). Changes of cerebral blood flow patterns caused by visual imagery. in: D.G. Russell, D.F. Marks, J.T.E. Richardson (eds.), Imagery 2. Dunedin: New Zealand, Human Performance Associates.Google Scholar
  14. Gustafson, L. & Hagberg, B. (1975). Emotional behaviour, personality changes and cognitive reduction in presenile dememtia: related to regional cerebral blood flow. Acta Psychiatrica Scandinavica, Suppl. 257, 39–67.Google Scholar
  15. Gustafson, L., Hagberg, B. & Ingvar, D.H. (1972). Psychiatric symptoms and psychological test results related to regional cerebral blood flow in dementia with early onset. in: J.S. Meyer, et al. (eds.), Research on Cerebral Circulation, Springfield Illinois: Charles C. Thomas.Google Scholar
  16. Hachinski, V.C., Linnette, D., Zilhka, E., Du Boulay, G.H., McAllister, V.L., Marshall, J., Ross Russell, R.W. & Symon, L. (1975). Cerebral blood flow in dementia. Archives of Neurology, 32, 632–637.PubMedCrossRefGoogle Scholar
  17. Jagust, W.J., Budinger, T.F. & Reed, B.R. (1987). The diagnosis of dementia with single photon emission tomography. Archives of Neurology, 44, 258–262.PubMedCrossRefGoogle Scholar
  18. Kinsbourne, M. & Warrington, E.K. (1962). A study of finger agnosia. Brain, 85, 47–66.PubMedCrossRefGoogle Scholar
  19. Johnson, K.A., Mueller, S.T., Walshe, T.M., English, R.J. & Holman, B.L. (1987). Cerebral perfusion imaging in Alzheimer’s disease: use of single photon emission computed tomography and Iofetamine Hydrochloride I-123. Archives of Neurology, 44, 165–168.PubMedCrossRefGoogle Scholar
  20. Lassen, N.A. (1985). Measurement of reginal cerebral blood flow in humans with single photon emission radioisotopes. in: L. Sokoloff (ed.), Brain Imaging and Brain Function. New York: Raven Press.Google Scholar
  21. Lassen, N.A., Munck, O. & Tottery, E.R. (1957). Mental function and oxygen consumption in organic dementia. Archives of Neurology and Psychiatry, 77, 126–133.PubMedCrossRefGoogle Scholar
  22. Lezak, M.D. (1983). Neuropsychological Assessment. Oxford: Oxford University Press.Google Scholar
  23. Meyer, J.S. (1983). Cerebral blood flow: use in differential diagnosis of Alzheimer’s disease. in: B. Reisberg (ed.), Alzheimer’s Disease: The Standard Reference. New York: The Free Press.Google Scholar
  24. Milner, B. (1971). Interhemispheric differences in the localisation of psychological processes in man. British Medical Bulletin, 27, 272–277.PubMedGoogle Scholar
  25. Mueller, S.P., Johnson, K.A., Hamil, D., English, R.J., Nagel, S.J., Ichish, M. & Holman, B.L. (1986). Assessment of I-123 IMP SPECT in mild/moderate and severe Alzheimer’s. Journal of Nuclear Medicine, 27, 889.Google Scholar
  26. Munn, N.L. (1961). Psychology: The Fundamentals of Human adjustment (4th Edit.). London: Harrap.Google Scholar
  27. Neary, D., Snowden, J.S., Sheilds, R.A., Burjan, A.W.I., Northen, B., MacDermott, N., Prescott, M.C. & Testa, H.J. (1987). Single photon emission tomography using 99m Tc HM-PAO in the investigation of dementia. Journal of Neurology Neurosurgery and Psychiatry, 50, 1101–1109.CrossRefGoogle Scholar
  28. Raichle, M.E., Grubb, R.L., Gado, M.H., Eichling, J.O. & Ter-Pogossian, M.M. (1976). Correlation between regional cerebral blood flow and oxidative metabolism. Archives of Neurology, 33, 523–526.PubMedCrossRefGoogle Scholar
  29. Raven, J.C. (1965). Guide to the Coloured Progressive Matrices. London: H.K.Lewis.Google Scholar
  30. Risberg, J. (1986). Regional cerebral blood flow. in: H.J. Hannay (ed.), Experimental Techniques in Human Neuropsychology. Oxord: Oxford University Press.Google Scholar
  31. Risberg, J. & Gustafson, L. (1983). 133-xenon cerebral blood flow in dementia and in neuropsychiatry research. in: P. Magistretti (ed.), Functional Radionuclide Imaging of the Brain. New York: Raven Press.Google Scholar
  32. Rosen, W.A., Terry, R.D., Fuld, P.A., Katzman, R. & Peck, A. (1980). Pathological verification of ischaemic score in differentiation of dementias. Annals of Neurology, 7, 486–488.PubMedCrossRefGoogle Scholar
  33. Sharp, P., Gemmell, G., Cherryman, G., Besson, J., Crawford, J. & Smith, F.W. (1986). Application of iodine-123-labelled isopropylamphetamine imaging to the study of dementia. Journal of Nuclear Medicine, 27, 761–768.PubMedGoogle Scholar
  34. Simard, D., Olesen, J., Paulson, O.B., Lassen, N.A. & Skinhoj, E. (1971). Regional cerebral blood flow and its regulation in dementia. Brain, 94, 273–288.PubMedCrossRefGoogle Scholar
  35. Wechsler, D. (1945). A standardised memory scale for clinical use. Journal of Psychology, 19, 87–95.CrossRefGoogle Scholar
  36. Wechsler, D. (1955). Manual for the Wechsler Adult Intelligence Scale. New York: Psychological Corporation.Google Scholar
  37. Weingartner, H. (1984). Psychobiological determinants of memory failures. in: C.R. Squire, N. Butters (eds.), The Neuropsychology of Memory, New York: Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • D. M. Parker
  • J. R. Crawford
  • J. A. O. Besson
  • H. G. Gemmel
  • P. F. Sharp

There are no affiliations available

Personalised recommendations