Advertisement

Chaos in the Einstein Equations — Characterization and Importance?

  • Svend E. Rugh
Part of the NATO ASI Series book series (NSSB, volume 332)

Abstract

Is it possible to define what we could mean by chaos in a space-time metric (even in the simplest toy-model studies)? Is it of importance for phenomena we may search for in Nature?

Keywords

Lyapunov Exponent Einstein Equation Gravitational Collapse Symbolic Dynamic Vacuum Einstein Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnowitt, R., Deser, S. and Misner, C.W., 1962, in Gravitation: An introduction to current research, edited by L. Witten. Wiley. New York.Google Scholar
  2. Artuso, R., Aurell, E. and Cvitanovic, P., 1990, Recycling of strange sets: II. Applications, Nonlinearity 3, 361.MathSciNetADSCrossRefGoogle Scholar
  3. Ashtekhar, A. and Pullin, J., 1989, Bianchi Cosmologies: A New Description, Syracuse University, print 89-0873, Nathan Rosen Festschrift (Israel Physical Society, 1990).Google Scholar
  4. Balazs, N.L. and Voros, A., 1986, Chaos on the pseudosphere, Phys. Rep. 143, 109.MathSciNetADSCrossRefGoogle Scholar
  5. Barrow, J.D., 1978, Quiescent cosmology, Nature 272, 211–215.ADSCrossRefGoogle Scholar
  6. —, 1982, Chaotic Behavior in General Relativity, Phys. Rep. 85, No. 1, 1–49.MathSciNetADSCrossRefGoogle Scholar
  7. —, 1984, in Classical General Relativity, edited by W.B. Bonnor et al., Cambridge University Press.Google Scholar
  8. Barrow, J.D. and Cotsakis, S., 1989, Chaotic behavior in higher-order gravity theories, Phys. Lett 232 B, 172–176.MathSciNetADSGoogle Scholar
  9. Barrow, J.D. and Matzner, R.A., 1977, The homogeneity and isotropy of the Universe, Mon. Not. R. astr. Soc. 181, 719–727.ADSGoogle Scholar
  10. Barrow, J.D. and Silk, J., 1984, The Left Hand of Creation. Heinemann, London.Google Scholar
  11. Barrow, J.D. and Sirouse-Zia, M., 1989, Mixmaster cosmological model in theories of gravitation with a quadratic Lagrangian, Phys. Rev. D 39, 2187.MathSciNetADSCrossRefGoogle Scholar
  12. Bedford, T, Keane, M. and Series, C. (eds), 1991, Ergodic theory, symbolic dynamics and hyperbolic spaces. Oxford University Press.Google Scholar
  13. Bell, J.S., 1987, Speakable and unspeakable in quantum mechanics, Cambridge University Press.Google Scholar
  14. Berry, M., 1983, Semiclassical mechanics of regular and irregular motion, in Les Houches, Session XXXVI, 1981, edited by G. Ioos et al. North-Holland.Google Scholar
  15. —, 1987, Quantum Chaology, Proc. Roy. Soc. Lond. A 413, 183.ADSGoogle Scholar
  16. Behr, C., 1962, Eine Verallgemeinerung des Friedmannschen Weltmodells mit positiver Raumkrümmung, Zeitschrift für Astrophysik 54, 268.MathSciNetADSMATHGoogle Scholar
  17. Belinskii, V.A. and Khalatnikov, I.M., 1969, On the Nature of the Singularities in the General Solution of the Gravitational Equations, Sov. Phys. JETP 29, No. 5, 911–917.ADSGoogle Scholar
  18. Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., 1970, Oscillatory Approach to the Singular Point in the Relativistic Cosmology, Adv. Phys. 19, 525–573.ADSCrossRefGoogle Scholar
  19. Khalatnikov, I.M. and Lifshitz, E.M. —, 1982, A general solution of the Einstein equations with a time singularity, Adv. Phys. 31, 639–667.ADSCrossRefGoogle Scholar
  20. Berger, B.K., 1989, Quantum chaos in the mixmaster universe, Phys. Rev. D 39, 2426–2429.MathSciNetADSCrossRefGoogle Scholar
  21. —, 1990, Numerical study of initially expanding mixmaster universes, Class. Quant. Grav. 7, 203.ADSCrossRefGoogle Scholar
  22. —, 1991, Comments on the Computation of Liapunov Exponents for the Mixmaster Universe, Gen. Rel. Grav. 23, 1385.ADSCrossRefGoogle Scholar
  23. —, 1993, How to determine approximate Mixmaster parameters from numerical evolution of Einstein’s equations, preprint.Google Scholar
  24. Biesiada, M. and Rugh, S.E., 1994, Maupertuis principle, Wheelers superspace and chaotic gravitational collapses, to appear.Google Scholar
  25. Biró, T.S., Gong, C., Müller, B. and Trayanov, A., 1993, Hamiltonian Dynamics of Yang-Mills Fields on a Lattice, Duke University preprint.Google Scholar
  26. Bogoyavlensky, O.I. and Novikov, S.P., 1973, Singularities of the cosmological model of the Bianchi IX type according to the qualitative theory of differential equations, Sov. Phys. JETP 37, 747.ADSGoogle Scholar
  27. Bogoyavlensky, O.I., 1985, Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer Verlag, New York.MATHCrossRefGoogle Scholar
  28. Bogomolny, E.B., Georgeot, B., J.-Giannoni, M. and Schmit, C., 1992, Chaotic Billiards Generated by Arithmetic Groups, Phys. Rev. Lett. 69, 1477.MathSciNetADSMATHCrossRefGoogle Scholar
  29. Bohr, H. and Nielsen, H.B., 1990, Limits where chaos tends to order and complexity to regularity. In Characterizing Complex Systems, Ed. H. Bohr. World Scientific.Google Scholar
  30. Bohr, T., 1990, Chaos and Turbulence, in Applications of Statistical Mechanics and Field Theory to Condensed Matter, edited by A.R. Bishop et al. Plenum Press.Google Scholar
  31. Boite, J., Steil, G. and and Steiner, F., 1992, Arithmetical Chaos and Violation of Universality in Energy Level Statistics, DESY 92-061 preprint.Google Scholar
  32. Bombelli, L. and Calzetta, E., 1992, Chaos around a black hole, Class. Quant. Grav. 9, 2573.MathSciNetADSCrossRefGoogle Scholar
  33. Bugalho, M.H., Rica da Silva, A. and Sousa Ramos, J., 1986, The Order of Chaos on A Bianchi-IX Cosmological Model, Gen. Rel. Grav. 18, 1263.MathSciNetADSMATHCrossRefGoogle Scholar
  34. Burd, A., Buric, N. and Ellis, G.F.R., 1990, A Numerical Analysis of Chaotic Behavior in Bianchi IX Models, Gen. Rel. Grav. 22, No.3, 349.MathSciNetADSMATHCrossRefGoogle Scholar
  35. Burd, A., Buric, N. and Tavakol, R.K., 1991, Chaos, entropy and cosmology, Class. and Quant Gravity 8, 123.MathSciNetADSMATHCrossRefGoogle Scholar
  36. Burd, A. and Tavakol, R.K., 1993, Invariant Lyapunov exponents and chaos in cosmology, Phys. Rev. D 47, 5336.ADSCrossRefGoogle Scholar
  37. Chang, S.J. and Weiss, N., 1979, Instability of constant Yang-Mills fields, Phys. Rev. D 20, 869.MathSciNetADSCrossRefGoogle Scholar
  38. Chernoff, D.F. and Barrow, J.D., 1983, Chaos in the Mixmaster Universe, Phys. Rev. Lett 50, 134.MathSciNetADSCrossRefGoogle Scholar
  39. Christodoulou, D., 1991, Nonlinear Nature of Gravitation and Gravitational-Wave Experiments, Phys. Rev. Lett 67, 1486.MathSciNetADSMATHCrossRefGoogle Scholar
  40. Coleman, S., Hartle, J.B., Piran, T. and Weinberg, S. (eds), 1992, Quantum Cosmology and Baby Universes. World Scientific.Google Scholar
  41. Coley, A.A. and Tavakol, R.K., 1992, Fragility in Cosmology, Gen. Rel. Grav. 24, 835.MathSciNetADSMATHCrossRefGoogle Scholar
  42. Contopoulos, G., 1990, Periodic orbits and chaos around two black holes, Proc. Roy. Soc. London A 431, p. 183–202.MathSciNetADSMATHCrossRefGoogle Scholar
  43. Contopoulos, G., Grammaticos, B. and Ramani, A., 1993, Painlevé analysis for the mixmaster universe model, J. Phys. A: Math. Gen. 26, 5795.MathSciNetADSMATHCrossRefGoogle Scholar
  44. Corless, R.M., Frank, G.W. and Monroe, J.G., 1990, Chaos and Continued Fractions, Physica D 46, 241–253.MathSciNetADSMATHCrossRefGoogle Scholar
  45. Cotsakis, S., Demarett, J., De Rop, Y. and Querella, L., 1993, Mixmaster Universe in fourth-order gravity theories, Phys. Rev. D 48, 4595.ADSCrossRefGoogle Scholar
  46. Cvitanovic, P., 1989, Universality in Chaos, 2.nd. edition. Adam Hilger.Google Scholar
  47. Cvitanovic, P., 1992, The Power of Chaos, in Applications of Chaos, Electrical Power Research Institute Workshop 1990, edited by J.H. Kim and J. Stringer. John Wiley & Sons. New York. In particular, chapt. 3, Cycles as the skeleton of chaos.Google Scholar
  48. Cvitanovic, P. and Myrheim, J., 1989, Complex Universality, Comm. Math. Phys. 121, 225.MathSciNetADSMATHCrossRefGoogle Scholar
  49. Eathetal D’Eath, P.D., Hawking, S.W. and Obregón, O., 1993, Supersymmetric Bianchi models and the square root of the Wheeler-DeWitt equation, Phys. Lett B 300, 44.ADSGoogle Scholar
  50. Demarett, J and De Rop, Y., 1993, The fractal nature of the power spectrum as an indicator of chaos in the Bianchi IX cosmological model, Phys. Lett B 299, 223.ADSGoogle Scholar
  51. DeWitt, B.S., 1967, Quantum Theory of Gravity. I. The Canonical Theory, Phys. Rev. 160, 1113.ADSMATHCrossRefGoogle Scholar
  52. DeWitt, B.S., 1970, Spacetime as a sheaf of geodesics in superspace, in Relativity, edited by M. Carmeli et al. Plenum Press. New York.Google Scholar
  53. Dirac, P.A.M., 1959, Fixation of Coordinates in the Hamiltonian Theory of Gravitation, Phys. Rev 144, 924.MathSciNetADSCrossRefGoogle Scholar
  54. Doroshkevich, A.G. and Novikov, I.D., 1971, Mixmaster Universes and the Cosmological Problem, Sov. Astron.-AJ 14, 763.ADSGoogle Scholar
  55. Doroshkevich, A.G., Lukash, V.N. and Novikov, I.D., 1973, The isotropization of homogeneous cosmological models, Sov. Phys.-JETP 37, 739.ADSGoogle Scholar
  56. Eckmann, J.P. and Ruelle, D., 1985, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57, 617.MathSciNetADSCrossRefGoogle Scholar
  57. Feigenbaum, M.J., 1988, Presentation Functions, Fixed Points, and a Theory of Scaling Function Dynamics, Journ. Stat. Phys. 52, 527.MathSciNetADSMATHCrossRefGoogle Scholar
  58. Francisco, G. and Matsas, G.E.A., 1988, Qualitative and Numerical Study of Bianchi IX Models, Gen. Rel. Grav. 20, No. 10, 1047.MathSciNetADSCrossRefGoogle Scholar
  59. Froggatt, C.D. and Nielsen, H.B., 1991, Origin of Symmetries, World Scientific.Google Scholar
  60. Furusawa, T., 1986, Quantum Chaos in the Mixmaster Universe, Prog. Theor. Phys. 75, 59–67 and 76, 67-74.MathSciNetADSCrossRefGoogle Scholar
  61. Giannoni, M.-J. and Ullmo, D., 1990, Coding Chaotic Billiards, Physica D 41, 371.MathSciNetADSGoogle Scholar
  62. Gibbons, 1985, Solitons in General Relativity and Supergravity, in Nonlinear Phenomena in Physics, edited by F. Claro, pp.255-269. Springer Verlag.Google Scholar
  63. Gibbons Gibbons, G.W., 1990, Self-gravitating magnetic monopoles, global monopoles and black holes, D.A.M.T.P. preprint (1990), to appear in the Proceedings of XII Autumn School, Lisbon 1990 (World Scientific).Google Scholar
  64. Goldwirth, D.S. and Piran, T., 1991, Entropy, Inflation and the arrow of time, Class. Quant. Grav 8, L 155.MathSciNetADSCrossRefGoogle Scholar
  65. Graham, R., 1991, Supersymmetric Bianchi Type IX Cosmology, Phys. Rev. Lett 67, 1381.MathSciNetADSMATHCrossRefGoogle Scholar
  66. —, 1992, Supersymmetric general Bianchi type IX cosmology with a cosmological term, Phys. Lett B 277, 393.ADSGoogle Scholar
  67. —, 1993, Chaos and Quantum Chaos in Cosmological Models, preprint.Google Scholar
  68. Graham, R. and Szépfalusy, P., 1990, Quantum creation of a generic universe, Phys. Rev. D 42, 2483–2490.ADSGoogle Scholar
  69. Grassberger, P., 1986, Toward a Quantitative Theory of Self-Generated Complexity, Int. Journ. Theor. Phys. 25, 907.MathSciNetMATHCrossRefGoogle Scholar
  70. Grassberger, P., Schreiber, T. and Schaffrath, C., 1991, Nonlinear Time Sequence Analysis, Int. Journ. of Bifurcation and Chaos 1, 521.MathSciNetADSMATHCrossRefGoogle Scholar
  71. Guth, A.H., 1992, The Big Bang and Cosmic Inflation, MIT preprint CTP # 2144, to appear in The Oscar Klein Memorial Lectures. Volume 2, edited by G. Ekspong. World Scientific.Google Scholar
  72. Gutzwiller, M.C., 1971, Periodic Orbits and Classical Quantization Conditions, Jour. Math. Phys. 12, 343.ADSCrossRefGoogle Scholar
  73. —, 1990, Chaos in Classical and Quantum Mechanics. Springer Verlag. New York.Google Scholar
  74. Hardy, G.H. and Wright, E.M. 1938, The Theory of Numbers. Oxford.Google Scholar
  75. Hartle, J.B., 1981, Particle Production and Dynamics in the early Universe, in Quantum Gravity 2. A second Oxford symposium, edited by C.J. Isham, R. Penrose and D.W. Sciama. Clarendon Press. Oxford.Google Scholar
  76. Hartle, J.B. and Hawking, S.W., 1983, Wave function of the Universe, Phys. Rev D 28, 2960.MathSciNetADSGoogle Scholar
  77. Hartle, J.B. and Kuchar, K.V., 1984, The Role of Time in Path Integral Formulations of Parametrized Theories, pp. 315-326 in Quantum Theory of Gravity. Essays in honor of the 60th birthday of Bryce S. De Witt, edited by S.M. Christensen. Adam Hilger.Google Scholar
  78. Hawking, S.W. and Ellis, G.F.R., 1973, The large scale structure of space-time. Cambridge University Press.Google Scholar
  79. Hawking, S.W. and Luttrell, J.C., 1984, The isotropy of the Universe, Phys. Lett. B 143, 83–86.MathSciNetADSGoogle Scholar
  80. Hawking, S.W. and Penrose, R., 1970, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A 314, 529.MathSciNetADSGoogle Scholar
  81. Hobill, D., Bernstein, D., Simpkins, D. and Welge, M., 1989, How chaotic is the mixmaster universe?, Proc. 12th Int. Conf. Gen. Rel. Grav. (University of Colorado, Boulder), abstracts p. 337.Google Scholar
  82. Hobill, D., Bernstein, D., Welge, M. and Simkins, D., 1991, The Mixmaster cosmology as a dynamical system, Class. Quant. Grav. 8, 1155–1171.MathSciNetADSMATHCrossRefGoogle Scholar
  83. Hu, B.L., Paz, J.P. and Sinha, S., 1993, pp. 145-165 in Directions in General Relativity. Volume 1. Papers in honor of Charles Misner, edited by B.L. Hu, M.P. Ryan and C.V. Vishveshwara. Cambridge University Press.Google Scholar
  84. Karas, V. and Vokrouchlicky, D., Chaotic Motion of Test Particles in the Ernst Space-time, 1992, Gen. Rel. Grav. 24, 729.ADSCrossRefGoogle Scholar
  85. Kaufmann, Z. and P. Szépfalusy, 1989, Properties of the entropies at weak intermittent states of Lorentz-type systems, Phys. Rev. A 40, 2615.ADSGoogle Scholar
  86. Khalatnikov, I.M., Lifshitz, E.M., Khanin, K.M., Shur, L.N. and Sinai, Ya.G., 1985, On the Stochasticity in Relativistic Cosmology, J. of Stat. Phys. 38, No 1/2, 97–114 and references therein.ADSCrossRefGoogle Scholar
  87. King, D.H., 1991, Gravity-wave insights to Bianchi type-IX universes, Phys. Rev. D 44, 2356.ADSGoogle Scholar
  88. Kolb, E.W. and Turner, M.S., 1990, The early universe. Addison-Wesley.Google Scholar
  89. Kuchar, K.V. and Ryan, M.P., 1989, Is minisuperspace quantization valid? Taub in Mixmaster, Phys. Rev. D 40, 3982.MathSciNetADSCrossRefGoogle Scholar
  90. Landau, L.D. and Lifshitz, E.M., 1975, The Classical Theory of Fields. Pergamon (4.ed.), especially §116-119.Google Scholar
  91. Larsen, A.L., 1993, Chaotic string-capture by black hole, NORDITA preprint, NORDITA-93/55 P.Google Scholar
  92. Lichtenberg, A.J. and Lieberman, M.A., 1983, Regular and Stochastic Motion. Springer Verlag.Google Scholar
  93. Lin, X. and Wald, R.M., 1990, Proof of the closed-universe recollapse conjecture for general Bianchi type-IX cosmologies, Phys. Rev. D 41, 2444.ADSGoogle Scholar
  94. Lloyd, S. and Pagels, H., 1988, Complexity as Thermodynamic Depth, Annals of Physics 188, 186.MathSciNetADSCrossRefGoogle Scholar
  95. Lukash, V.N., 1983, Doctorate Thesis. Moscow.Google Scholar
  96. —, 1989–90, Private communication.Google Scholar
  97. MacCallum, M.A.H., 1979, Anisotropic and Inhomogeneous Relativistic Cosmologies, in General Relativity-An Einstein Centenary Survey, edited by S.W. Hawking and W. Israel. Cambridge University Press.Google Scholar
  98. —, 1983, Relativistic Cosmology for Astrophysicists, pp. 9-39 in Jones, B.J.T. Jones, J.E. (eds.), The Origin and Evolution of Galaxies, D. Reidel Publ.Google Scholar
  99. Matinyan, S.G., 1985, Dynamical chaos of non-Abelian gauge fields, Sov. J. Part. Nucl. 16 (3), 226.MathSciNetGoogle Scholar
  100. Meyer, H.-D., Theory of Liapunov exponents of Hamiltonian systems and a numerical study on the transition from regular to irregular classical motion, J. Chem. Phys. 84, 3147.Google Scholar
  101. Misner, C.W., 1968, The Isotropy of the Universe, Astrophys. J. 151, 431.ADSCrossRefGoogle Scholar
  102. —, 1969a, Mixmaster Universe, Phys. Rev. Lett. 22, No. 20, 1071.ADSMATHCrossRefGoogle Scholar
  103. —, 1969b Quantum Cosmology. I. Phys. Rev. 186, 1319.MATHGoogle Scholar
  104. —, 1969 c, Absolute Zero of Time, Phys. Rev. 186, 1328.ADSMATHCrossRefGoogle Scholar
  105. —, 1972, Minisuperspace, in Magic Without Magic: John Archibald Wheeler, a Collection of Essays in Honor of his 60 th Birthday, edited by J. Klauder. Freeman. San Francisco.Google Scholar
  106. Misner, C.W., Thorne, K.S. and Wheeler, J.A., 1973, Gravitation. W.H. Freeman & Co, especially §30. Cited in the text as MTW.Google Scholar
  107. Moncrief, V. and Ryan, M.P., 1991, Amplitude-real-phase exact solutions for quantum mixmaster universes, Phys. Rev. D 44, 2375.MathSciNetADSGoogle Scholar
  108. Müller, B. and Trayanov, A., 1992, Deterministic Chaos in Non-Abelian Lattice Gauge Theory, Phys. Rev. Lett. 68, 3387.ADSCrossRefGoogle Scholar
  109. Nielsen, H.B., 1976, Dual Strings, Section 6. Catastrophe Theory Programme, pp. 528-543 in Barbour, I.M. and Davis, A.T. (eds.), Fundamentals of Quark Models, Scottish University Summer School in Physics.Google Scholar
  110. —, 1981, Field Theories without fundamental gauge symmetries, Phil. Roy. Soc. Lond. A 320, 261.Google Scholar
  111. Nielsen, H.B. and Rugh, S.E., 1992a Chaos in the Fundamental Forces?, Niels Bohr Institute preprint NBI-HE-92-85, appeared in Quantum Physics and the Universe, edited by M. Namiki et al., Vistas in Astronomy 37. Pergamon Press.Google Scholar
  112. Rugh, S.E. —, 1992 b, Weyl Particles, Weak Interactions and Origin of Geometry, Nucl. Phys. (Proc. Suppl.) 29 B, C, 200–246.ADSCrossRefGoogle Scholar
  113. —, 1993, Why do we live in 3+1 dimensions?, Niels Bohr Inst. preprint, NBI-HE-93-11.Google Scholar
  114. Nielsen, H.B., Rugh, S.E. and Surlykke, C., 1993, Seeking inspiration from the Standard Model in order to go beyond it, Niels Bohr Inst. preprint, NBI-HE-93-48.Google Scholar
  115. Nielsen, N.K. and Olesen, P., 1978, An unstable Yang-Mills field mode, Nucl. Phys. B 144, 376.MathSciNetADSCrossRefGoogle Scholar
  116. Olive, K.A., 1990, Inflation, Phys. Rep. 190, 307–403.ADSCrossRefGoogle Scholar
  117. Ove, R., 1990, Nonlinear Gravitational Effect, Phys. Rev. Lett. 64, 1200.MathSciNetADSMATHCrossRefGoogle Scholar
  118. Penrose, R., 1979, Singularities and time-asymmetry. In General Relativity-An Einstein Centenary Survey, edited by S.W. Hawking and W. Israel. Cambridge University Press.Google Scholar
  119. —, 1989, The Emperor’s New Mind. Oxford University Press.Google Scholar
  120. Pullin, J., 1990, Time and Chaos in General Relativity. Talk given at the VII SILARG, Simposio Latinoamericano de Relatividad y Gravitacion, Mexico City, Mexico, December 1990. Syracuse University preprint 90-0734.Google Scholar
  121. Qadir, A. and Wheeler, J.A., 1989, Late Stages of Crunch, Nucl. Phys. (Proc. Suppl.) 6 B, 345–347.MathSciNetADSCrossRefGoogle Scholar
  122. Raychaudhuri, A.K., 1955, Relativistic Cosmology. I, Phys. Rev. 98, 1123.MathSciNetADSMATHCrossRefGoogle Scholar
  123. —, 1989, An approach to Anisotropic Cosmologies, in Gravitation, Gauge Theories and the Early Universe, edited by B.R. Iyer et al., pp. 89-106. Kluwer.Google Scholar
  124. Ruelle, D., 1991, Chance and Chaos. Princeton University Press.Google Scholar
  125. Rugh, S.E., 1990a, Chaotic Behavior and Oscillating Three-volumes in a Space-Time Metric in General Relativity, Cand. Scient. Thesis, The Niels Bohr Institute, Copenhagen (January 1990; Second printing, with small additions and corrections, april 1990; distributed). Available upon request.Google Scholar
  126. —, 1990b, Chaos in the Einstein Equations, Niels Bohr Institute preprint NBI-HE-91-59. Never submitted but distributed as a preliminary draft at the Texas/ESO-CERN symposium on Relativistic Astrophysics, Cosmology and Fundamental Physics, December 16–21 1990, Brighton, UK.Google Scholar
  127. —, 1993, Chaos in the Einstein equations, to appear in Chaos, Fractals and Solitons.Google Scholar
  128. —, 1994, Chaos in the Fundamental Forces-Characterization and Importance?, Licentiate Thesis, The Niels Bohr Institute, to appear.Google Scholar
  129. Rugh, S.E. and Jones, B.J.T., 1990, Chaotic behavior and oscillating three-volumes in Bianchi IX universes, Phys. Lett. A 147, 353.MathSciNetADSGoogle Scholar
  130. Ryan, M.P., 1972, Hamiltonian Cosmology. Springer Verlag.Google Scholar
  131. Ryan, M.P. and Shepley, L.C., 1975, Homogeneous Relativistic Cosmologies. Princeton University Press.Google Scholar
  132. Savidy, G.K., 1984, Classical and quantum mechanics of non-Abelian gauge fields, Nucl. Phys. B 246, 302.ADSCrossRefGoogle Scholar
  133. Smolin, L., 1990, New Hamiltonian variables, pp. 449-461 in Proc. 12.th Int. Conf. on General Relativity and Gravitation, Ashby, N. et al (eds.), Cambridge University Press.Google Scholar
  134. Straumann, N. and Zhou, Z., 1990, Instability of a colored black hole solution, Phys. Lett. B 243, 33.MathSciNetADSGoogle Scholar
  135. Szépfalusy, P. and Györgyi, G., 1986, Entropy decay as a measure of stochasticity in chaotic systems, Phys. Rev A 33, 2852.ADSGoogle Scholar
  136. Szydłowski, M. and Łapeta, A, 1990, Pseudo-Riemannian manifold of mixmaster dynamical systems, Phys. Lett B 148, 239.Google Scholar
  137. Szydłowski, M. and Biesiada, M., 1991, Chaos in mixmaster models, Phys. Rev. D 44, 2369.ADSGoogle Scholar
  138. Tavakol, R.K., 1991, Fragility and Deterministic Modelling in the Exact Sciences, Brit. J. Phil. Sci. 42, 147.MATHCrossRefGoogle Scholar
  139. Taub, A.H., 1951, Empty spacetimes admitting a three parameter group of motions, Ann. of Math. 53, 472.MathSciNetADSMATHCrossRefGoogle Scholar
  140. Thorne, K.S., 1985, The Dynamics of Spacetime Curvature: Nonlinear Aspects, in Nonlinear Phenomena in Physics, edited by F. Claro, pp.280-291. Springer Verlag.Google Scholar
  141. Wald, R.M., 1984, General Relativity. The University of Chicago Press.Google Scholar
  142. Weinberg, S., 1992, Dreams of a Final Theory. Pantheon Books. New York.Google Scholar
  143. Wellner, M., 1992, Evidence for a Yang-Mills Fractal, Phys. Rev. Lett. 68, 1811.MathSciNetADSMATHCrossRefGoogle Scholar
  144. Wheeler, J.A., 1968, Superspace and the Nature of Quantum Geometrodynamics, in Batelle Rencontres, edited by CM. DeWitt and J.A. Wheeler. Benjamin, New York.Google Scholar
  145. Zardecki, A., 1983, Modelling in Chaotic Relativity, Phys. Rev. D 28, 1235.MathSciNetADSGoogle Scholar
  146. Zel’dovich, Ya.B. and Novikov, I.D., 1983, Relativistic Astrophysics Vol.2, The structure and Evolution of the Universe. The University of Chicago Press, in particular §22.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Svend E. Rugh
    • 1
  1. 1.The Niels Bohr InstituteUniversity of CopenhagenKøbenhavn ØDenmark

Personalised recommendations