Mixing Properties of Compact K = −1 FLRW Models

  • George Ellis
  • Reza Tavakol
Part of the NATO ASI Series book series (NSSB, volume 332)


We study the mixing properties of compact k = −1 FLRW models, as a function of the cosmological parameters and the topological compactification scale. We find the mixing to be less pronounced than some of the claims made previously, nevertheless in low density universes the mechanism can give rise to appreciable mixing and result in a reduction in the measured cmwbr anisotropy on a range of angular scales. These models also have other important features, namely: (i) they allow chaos to be expressed in a gauge invariant way; (ii) they are structurally stable and (iii) in low density universes they result in radically different estimates of length scales with potentially important consequences for the interpretation of the angular variation of the background radiation.


Lyapunov Exponent Constant Curvature Friedmann Equation Null Geodesic Geodesic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See for example Belinski, V.A., Khalatnikov, I.M. and Lifshitz, E.M. (1970) Adv. Phys., 19, 525.ADSCrossRefGoogle Scholar
  2. Barrow, J.D. (1982) Phys. Rep., 85, 1.MathSciNetADSCrossRefGoogle Scholar
  3. Burd, A.B., Buric, N. and Tavakol, R.K. (1991) Class. Quantum Grav., 8, 123.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [2]
    Koiller, J., De Mello Neto, J.R.T. and Damiao Soares, I. (1985) Phys. Lett, 110A, 260.ADSGoogle Scholar
  5. [3]
    Lockhart, C.M., Misra B. and Prigogine I. (1982) Phys. Rev. D., 25, 921.MathSciNetADSCrossRefGoogle Scholar
  6. [4]
    Gurzadyan V. G. and Kocharyan A.A., (1992) Astron. Astrophys., 260, 1614.Google Scholar
  7. [5]
    Calzetta, E. and El Hasi, C. (1992): ‘Chaotic Friedmann Robertson Cosmology’, Preprint.Google Scholar
  8. [6]
    Zydlowski, M. and Lapeta, A. (1990) Phys. Lett, 148A, 239.ADSGoogle Scholar
  9. [7]
    Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics, 2nd ed. (Springer-Verlag, New York).CrossRefGoogle Scholar
  10. [8]
    Hopf, H. (1936) Trans. Am. Math. Soc., 45, 241.MathSciNetGoogle Scholar
  11. [9]
    Anosov, D. (1967) Proc. Steklov Ins., 90, Ins. No. 90.Google Scholar
  12. [10]
    Hadamard J. (1898) J. Math. Pures et Appl., 4, 27.Google Scholar
  13. [11]
    Hedlund, G.A. (1939) Bull. Amer. Math. Soc., 45, No. 4, 241.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [12]
    Sinai, Y.G. (1960) Sov. Math. Dok., 1, 335.MathSciNetzbMATHGoogle Scholar
  15. [13]
    Wolf, J.A. (1967) Spaces of constant curvature, McGraw-Hill, New York.zbMATHGoogle Scholar
  16. [14]
    Thurston, W.P. and Weekes, J.R. (1984) Scientific American, July, p.94.Google Scholar
  17. [15]
    Ellis, G.F.R. (1971) Gen. Rel. Grav., 11, 11.Google Scholar
  18. [16]
    Chitre, D.M. (1972) University of Maryland Technical Report No. 72-125.Google Scholar
  19. [17]
    Pullin, J. (1990) Syracuse preprint 90-0732.Google Scholar
  20. [18]
    Ellis, G.F.R. and Rothman, T. (1993) ‘Lost Horizons’. Am. Journ. Phys. (to appear).Google Scholar
  21. [19]
    Burd, A. and Tavakol, R. (1993) Phys. Rev., D 47, 5336.ADSCrossRefGoogle Scholar
  22. [20]
    Nielson, H.B. and Rugh, S.E. ‘Chaos in Fundamental Forces’, In Proceedings of a symposium on Quantum Physics and the Universe, Waseda University, 1992. To appear.Google Scholar
  23. [21]
    Tavakol, R.K. and Ellis, G.F.R. (1988) Phys. Lett, 130A, 217.MathSciNetADSGoogle Scholar
  24. [22]
    Coley, A.A. and Tavakol, R.K. (1992) Gen. Rel. Grav., 25, 835.MathSciNetADSCrossRefGoogle Scholar
  25. [23]
    Schneider, P., Ehlers, J., and Falco, (1992). Gravitational Lensing. Springer, Berlin.Google Scholar
  26. [24]
    Arnold, V. and Avez, A. (1968) Ergodic Problems of Classical Mechanics, Benjamin, New York.Google Scholar
  27. [25]
    Ellis, G. and Tavakol, R. (1993) ‘Geodesic Instability and Isotropy of CMWBR’, Class. Quantum Grav., to appear.Google Scholar
  28. [26]
    Ellis, G.F.R. (1971). In General Relativity and Cosmology, Proc Int School of Physics “Enrico Fermi” (Varenna), Course XLVII. Ed. RK Sachs (Academic Press), 104-179.Google Scholar
  29. [27]
    Matravers, D.R. and Aziz, A.M. (1988) MAASSA, 47, 124.ADSGoogle Scholar
  30. [28]
    Thurston, W.P. (1978) The geometry and topology of three manifolds, Princeton University Lecture Notes.Google Scholar
  31. [29]
    Matveev, S.V. and Fomenko, A.T. (1988) Russ. Math. Surv., 43, 3; Weeks, J. (1985) Princeton University Ph.D. Thesis.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [30]
    Gott J.R. III (1980) Mon. Not. R. Astron. Soc., 193, 153.MathSciNetADSGoogle Scholar
  33. [31]
    Meyerhoff, R. (1986) Commun. Math. Helv. 61, 271.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [32]
    Hayward, G. and Twamley, J. (1990) Phys. Lett., 149 A, 84.ADSGoogle Scholar
  35. [33]
    Ellis, G.F.R. and Schreiber, G. (1986) Phys. Letts., 115A, 97.MathSciNetADSCrossRefGoogle Scholar
  36. [34]
    Fairall, A.P. (1985) Mon. Not. Ast. Soc. S. A. 44, 114.Google Scholar
  37. [35]
    Stevens, D, Scott, S. and Silk, J, (1993). ‘Microwave Background Anisotropy in a Toroidal Universe’. To appear, Phys Rev Lett. Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • George Ellis
    • 1
    • 2
    • 3
  • Reza Tavakol
    • 1
  1. 1.Astronomy UnitQueen Mary & Westfield CollegeLondonUK
  2. 2.Department of Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  3. 3.SISSAMiramare, TriesteItaly

Personalised recommendations