Advertisement

Density Functional Theory of Time-Dependent Systems

  • E. K. U. Gross
  • C. A. Ullrich
  • U. J. Gossmann
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

The response of an interacting many-particle system to a time-dependent external field can usually be treated within linear response theory. Due to rapid experimental progress in the field of laser physics, however, ultra-short laser pulses of very high intensity have become available in recent years. The electric field produced in such pulses can reach the strength of the electric field caused by atomic nuclei. If an atomic system is placed in the focus of such a laser pulse one observes a wealth of new phenomena [1] which cannot be explained by traditional perturbation theory. The non-perturbative quantum mechanical description of interacting particles moving in a very strong time-dependent external field therefore has become a prominent problem of theoretical physics. In principle, it requires a full solution of the time-dependent Schrödinger equation for the interacting many-body system, which is an exceedingly difficult task. In view of the success of density functional methods in the treatment of stationary many-body systems and in view of their numerical simplicity, a time-dependent version of density functional theory appears highly desirable, both within and beyond the regime of linear response.

Keywords

Schrodinger Equation Functional Derivative Slater Determinant Linear Response Theory Photoabsorption Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atoms in Intense Laser Fields, edited by M. Gavrila (Academic Press, Boston, 1992).Google Scholar
  2. [2]
    V. Peuckert, J. Phys. C 11, 4945 (1978).ADSCrossRefGoogle Scholar
  3. [3]
    A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).ADSCrossRefGoogle Scholar
  4. [4]
    B.M. Deb and S.K. Ghosh, J. Chem. Phys. 77, 342 (1982).ADSCrossRefGoogle Scholar
  5. [5]
    S.K. Ghosh and B.M. Deb, Chem. Phys. 71, 295 (1982).ADSCrossRefGoogle Scholar
  6. [6]
    S.K. Ghosh and B.M. Deb, Theor. Chim. Acta 62, 209 (1983).CrossRefGoogle Scholar
  7. [7]
    S.K. Ghosh and B.M. Deb, J. Mol. Struct. 103, 163 (1983).CrossRefGoogle Scholar
  8. [8]
    L.J. Bartolotti, Phys. Rev. A 24, 1661 (1981).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L.J. Bartolotti, Phys. Rev. A 26, 2243 (1982).ADSCrossRefGoogle Scholar
  10. [10]
    L.J. Bartolotti, J. Chem. Phys. 80, 5687 (1984).ADSCrossRefGoogle Scholar
  11. [11]
    L.J. Bartolotti, Phys. Rev. A 36, 4492 (1987).ADSCrossRefGoogle Scholar
  12. [12]
    E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).ADSCrossRefGoogle Scholar
  13. [13]
    C.A. Ullrich, U.J. Gossmann, and E.K.U. Gross, Phys. Rev. Lett., in press.Google Scholar
  14. [14]
    R.T. Sharp and G.K. Horton, Phys. Rev. 90, 317 (1953).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36 (1976).ADSCrossRefGoogle Scholar
  16. [16]
    M.R. Norman and D.D. Koelling, Phys. Rev. B 30, 5530 (1984).ADSCrossRefGoogle Scholar
  17. [17]
    J.D. Talman, Comput. Phys. Commun. 54, 85 (1989).ADSCrossRefGoogle Scholar
  18. [18]
    Y. Wang, J.P. Perdew, J.A. Chevary, L.D. Macdonald, and S.H. Vosko, Phys. Rev. A 41, 78 (1990).ADSCrossRefGoogle Scholar
  19. [19]
    E. Engel, J.A. Chevary, L.D. Macdonald, and S.H. Vosko, Z. Phys. D 23, 7(1992).ADSCrossRefGoogle Scholar
  20. [20]
    E. Engel and S.H. Vosko, Phys. Rev. A 47, 2800 (1993).ADSCrossRefGoogle Scholar
  21. [21]
    J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Lett. A 146, 256 (1990).ADSCrossRefGoogle Scholar
  22. [22]
    J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Lett. A 148, 470 (1990).ADSCrossRefGoogle Scholar
  23. [23]
    Y. Li, J.B. Krieger, M.R. Norman, and G.J. Iafrate, Phys. Rev. B 44, 10437 (1991).ADSCrossRefGoogle Scholar
  24. [24]
    J.B. Krieger, Y. Li, and G.J. Iafrate, Int. J. Quantum Chem. 41, 489 (1992).CrossRefGoogle Scholar
  25. [25]
    J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 45, 101 (1992).ADSCrossRefGoogle Scholar
  26. [26]
    J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 46, 5453 (1992).ADSCrossRefGoogle Scholar
  27. [27]
    J.B. Krieger, Y. Li, and G.J. Iafrate, Chem. Phys. Lett. 191, 38 (1992).ADSCrossRefGoogle Scholar
  28. [28]
    Y. Li, J.B. Krieger, and G.J. Iafrate, Phys. Rev. A 47, 165 (1993).ADSCrossRefGoogle Scholar
  29. [29]
    J.B. Krieger, Y. Li, and G.J. Iafrate, this volume.Google Scholar
  30. [30]
    E.K.U. Gross and W. Kohn, Adv. Quant. Chem. 21, 255 (1990).CrossRefGoogle Scholar
  31. [31]
    L.F. Errea, L. Méndez, A. Riera, M. Yáñez, J. Hanssen, C. Harel, and A. Salin, J. Physique 46, 719 (1985).Google Scholar
  32. [32]
    L L. Cooper, A.S. Dickinson, S.K. Sur, and C.T. Ta, J. Phys. B 20, 2005 (1987).ADSCrossRefGoogle Scholar
  33. [33]
    A. Henne, H.-J. Lüdde, A. Toepfer, and R.M. Dreizler, Phys. Lett. A 124, 508 (1987).ADSCrossRefGoogle Scholar
  34. [34]
    W. Fritsch and C.D. Lin, Phys. Lett. A 123, 128 (1987).ADSCrossRefGoogle Scholar
  35. [35]
    J.F. Reading and A.L. Ford, Phys. Rev. Lett. 58, 543 (1987).ADSCrossRefGoogle Scholar
  36. [36]
    J.F. Reading and A.L. Ford, J. Phys. B 20, 3747 (1987).ADSCrossRefGoogle Scholar
  37. [37]
    J.E. Harriman, Phys. Rev. A 24, 680 (1981).ADSCrossRefGoogle Scholar
  38. [38]
    G. Zumbach and K. Maschke, Phys. Rev. A. 28, 544 (1983). Erratum: Phys. Rev. A 29, 1585 (1984).MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    E.H. Lieb, in Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia, p. 31 (Plenum Press, New York, 1985).CrossRefGoogle Scholar
  40. [40]
    M. Levy, Phys. Rev. A 26, 1200 (1982).ADSCrossRefGoogle Scholar
  41. [41]
    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).ADSCrossRefGoogle Scholar
  42. [42]
    H. Kohl and R.M. Dreizler, Phys. Rev. Lett. 56, 1993 (1986).MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    S.K. Ghosh and A.K. Dhara, Phys. Rev. A 38, 1149 (1988).ADSCrossRefGoogle Scholar
  44. [44]
    K.L. Liu and S.H. Vosko, Can. J. Phys. 67, 1015 (1989).ADSCrossRefGoogle Scholar
  45. [45]
    T.-C. Li and P.-Q. Tong, Phys. Rev. A 34, 529 (1986).ADSCrossRefGoogle Scholar
  46. [46]
    T.-C. Li and P.-Q. Tong, Phys. Rev. A 31, 1950 (1985).ADSCrossRefGoogle Scholar
  47. [47]
    T.-C. Li and Y. Li, Phys. Rev. A 31, 3970 (1985).ADSCrossRefGoogle Scholar
  48. [48]
    T.K. Ng, Phys. Rev. Lett. 62, 2417 (1989).ADSCrossRefGoogle Scholar
  49. [49]
    O.-J. Wacker, R. Kümmel, and E.K.U. Gross, Phys. Rev. Lett. 73, 2915 (1994).ADSCrossRefGoogle Scholar
  50. [50]
    D. Mearns and W. Kohn, Phys. Rev. A 35, 4796 (1987).ADSCrossRefGoogle Scholar
  51. [51]
    E.K.U. Gross, D. Mearns, and L.N. Oliveira, Phys. Rev. Lett. 61, 1518 (1988).ADSCrossRefGoogle Scholar
  52. [52]
    J. Wloka, Funktionalanalysis und Anwendungen (de Gruyter, Berlin, 1971).MATHGoogle Scholar
  53. [53]
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985). Erratum: ibid. 57, 923 (1986).ADSCrossRefGoogle Scholar
  56. [56]
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).ADSCrossRefGoogle Scholar
  57. [57]
    N. Iwamoto and E.K.U. Gross, Phys. Rev. B 35, 3003 (1987).ADSCrossRefGoogle Scholar
  58. [58]
    D.M. Ceperley, Phys. Rev. B 18, 3126 (1978).ADSCrossRefGoogle Scholar
  59. [59]
    S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  60. [60]
    G. Niklasson, Phys. Rev. B 10, 3052 (1974).ADSCrossRefGoogle Scholar
  61. [61]
    A.A. Kugler, J. Stat. Phys. 12, 35 (1975).ADSCrossRefGoogle Scholar
  62. [62]
    A. Holas and K.S. Singwi, Phys. Rev. B 40, 158 (1989).ADSCrossRefGoogle Scholar
  63. [63]
    A.J. Glick and W.F. Long, Phys. Rev. B 4, 3455 (1971).ADSCrossRefGoogle Scholar
  64. [64]
    N. Iwamoto, Phys. Rev. A 30, 2597 (1984).ADSCrossRefGoogle Scholar
  65. [65]
    N. Iwamoto, Phys. Rev. A 30, 3289 (1984).ADSCrossRefGoogle Scholar
  66. [66]
    P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists (Springer-Verlag, Berlin, 1954).MATHGoogle Scholar
  67. [67]
    B. Dabrowski, Phys. Rev. B 34, 4989 (1986).ADSCrossRefGoogle Scholar
  68. [68]
    K.L. Liu, Can. J. Phys. 69, 573 (1991).ADSCrossRefGoogle Scholar
  69. [69]
    A. Zangwill and P. Soven, Phys. Rev. Lett. 45, 204 (1980).ADSCrossRefGoogle Scholar
  70. [70]
    A. Zangwill and P. Soven, Phys. Rev. B 24, 4121 (1981).ADSCrossRefGoogle Scholar
  71. [71]
    Z.H. Levine and P. Soven, Phys. Rev. Lett. 50, 2074 (1983).ADSCrossRefGoogle Scholar
  72. [72]
    Z.H. Levine and P. Soven, Phys. Rev. A 29, 625 (1984).ADSCrossRefGoogle Scholar
  73. [73]
    A. Liebsch, Phys. Rev. B 36, 7378 (1987).ADSCrossRefGoogle Scholar
  74. [74]
    J.F. Dobson and G.H. Harris, J. Phys. C 20, 6127 (1987).ADSCrossRefGoogle Scholar
  75. [75]
    J.F. Dobson and G.H. Harris, J. Phys. C 21, L729 (1988).ADSCrossRefGoogle Scholar
  76. [76]
    P. Gies and R.R. Gerhardts, Phys. Rev. B 36, 4422 (1987).ADSCrossRefGoogle Scholar
  77. [77]
    P. Gies and R.R. Gerhardts, J. Vac. Sci. Technol. A 5, 936 (1987).ADSCrossRefGoogle Scholar
  78. [78]
    P. Gies and R.R. Gerhardts, Phys. Rev. B 37, 10020 (1988).ADSCrossRefGoogle Scholar
  79. [79]
    K. Kempa and W.L. Schaich, Phys. Rev. B 37, 6711 (1988).ADSCrossRefGoogle Scholar
  80. [80]
    T. Ando, Z. Phys. B 26, 263 (1977).ADSCrossRefGoogle Scholar
  81. [81]
    Z.H. Levine and D.C. Allan, Phys. Rev. Lett. 63, 1719 (1989).ADSCrossRefGoogle Scholar
  82. [82]
    W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984).ADSCrossRefGoogle Scholar
  83. [83]
    W. Ekardt, Phys. Rev. B 31, 6360 (1985).ADSCrossRefGoogle Scholar
  84. [84]
    A. Rubio, L.C. Balbás, and J.A. Alonso, Phys. Rev. B 46, 4891 (1992).ADSCrossRefGoogle Scholar
  85. [85]
    J.A. Alonso, A. Rubio, and L.C. Balbás, Phil. Mag. B 69, 1037 (1994).CrossRefGoogle Scholar
  86. [86]
    R. Haensel, G. Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969).ADSCrossRefGoogle Scholar
  87. [87]
    G.D. Mahan and K.R. Subbaswamy, Local Density Theory of Polarizability (Plenum Press, New York, 1990).Google Scholar
  88. [88]
    M. Petersilka and E.K.U. Gross, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • E. K. U. Gross
    • 1
  • C. A. Ullrich
    • 1
  • U. J. Gossmann
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations