Valence Density Functionals

  • James F. Annett
Part of the NATO ASI Series book series (NSSB, volume 337)


Since the inception of Density Functional Theory (DFT) the remarkable success of the Local Density Approximation (LDA) has been difficult to improve in a systematic way. Originally Hohenberg, Kohn and Sham introduced LDA as the first term in a gradient expansion of the exchange-correlation energy functional[1]. It success in a wide variety of systems, such as atoms molecules and solids[2, 3], was somewhat surprising, since the density gradients are not small. The accuracy of LDA was attributed to the sum rules which it satisfies[4] and to the range of validity of the small gradient approximation being larger than expected[5, 6]. Well defined gradient expansions[7] were carried out, however the most accurate numerical results for real systems require either a semi-empirical approach[8] or a detailed model for the exchange-correlation hole[9]. A large number of exact constraints have also been placed upon the possible functionals which are beginning to lead to more systematic improvements[10].


Ground State Energy Local Density Approximation Core State Kohn Sham Isoelectronic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. [2]
    R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  4. [3]
    R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford, 1989).Google Scholar
  5. [4]
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B. 13, 4274 (1976).ADSCrossRefGoogle Scholar
  6. [5]
    V. Sahni, J. Gruenebaum, and J.P. Perdew, Phys. Rev. B. 26, 4371 (1982).ADSCrossRefGoogle Scholar
  7. [6]
    D.C. Langreth and M.J. Mehl, Phys. Rev. B. 28, 1809 (1983).ADSCrossRefGoogle Scholar
  8. [7]
    D.J.W. Geldart and M. Rasolt, in “Single Particle Density in Physics and Chemistry”, (Academic Press, 1987).Google Scholar
  9. [8]
    A.D. Becke, J. Chem. Phys. 84, 4524 (1986).ADSCrossRefGoogle Scholar
  10. A.D. Becke, Phys. Rev. A 38, 3089 (1988).ADSCrossRefGoogle Scholar
  11. [9]
    J.P. Perdew and W. Yue, Phys. Rev. B 33, 8800 (1986).ADSCrossRefGoogle Scholar
  12. [10]
    L.C. Wilson and M. Levy, Phys. Rev. B. 41, 12930 (1990).ADSCrossRefGoogle Scholar
  13. [11]
    J.F. Annett, Phys. Rev. Lett. 69, 2244 (1992).ADSCrossRefGoogle Scholar
  14. [12]
    M.C. Payne Rev. Mod. Phys. 64, 1045 (1992).ADSCrossRefGoogle Scholar
  15. [13]
    O. Gunnarsson, J. Harris and R.O. Jones, Phys. Rev. B. 15, 3027 (1977).ADSCrossRefGoogle Scholar
  16. [14]
    U. von Barth and CD. Gelatt, Phys. Rev. B. 21, 2222 (1980).ADSCrossRefGoogle Scholar
  17. [15]
    D.R. Hamman, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1974).CrossRefGoogle Scholar
  18. G.B. Bachelet, D.R. Hamann and M. Shluter, Phys. Rev. B 26, 4199 (1982).ADSCrossRefGoogle Scholar
  19. [16]
    S.G. Louie, S. Froyen and M.L. Cohen, Phys. Rev. B. 26, 1738 (1982).ADSCrossRefGoogle Scholar
  20. [17]
    D.M. Bylander and L. Kleinman, Phys. Rev. B. 43, 12070 (1991).ADSCrossRefGoogle Scholar
  21. [18]
    M. Levy, Proc. Natl. Acad. Sci. USA. 76, 6062 (1979).ADSCrossRefGoogle Scholar
  22. [19]
    S. Valone, Phys. Rev. B 44 1509 (1991).ADSGoogle Scholar
  23. [20]
    R.L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl 1, (1987).Google Scholar
  24. [21]
    The LSDA parameterization used was from: J.P. Perdew and Y. Wang, Phys. Rev. B. 45, 13244 (1992).ADSCrossRefGoogle Scholar
  25. [22]
    E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14 177 (1974).ADSCrossRefGoogle Scholar
  26. [23]
    E.L. Shirley, R.M. Martin and G.B. Bachelet, Phys. Rev. B. 42, 5057 (1990).ADSCrossRefGoogle Scholar
  27. F.R. Vukajlovic, E.L. Shirley and R.M. Martin, Phys. Rev. B 43, 3994 (1991).ADSCrossRefGoogle Scholar
  28. [24]
    D.M. Bylander and L. Kleinman, Phys. Rev. B. 43, 12070 (1991).ADSCrossRefGoogle Scholar
  29. [25]
    B.L. Hammond, P.J. Reynolds, and W.A. Lester Jr., Phys. Rev. Lett. 61 2312 (1988).ADSCrossRefGoogle Scholar
  30. [26]
    S. Fahy, X. W. Wang and S.G. Louie, Phys. Rev. Lett. 61, 1631 (1988).ADSCrossRefGoogle Scholar
  31. [27]
    G. B. Bachelet, D.M. Ceperley and M.G.B. Chiocchetti, Phys. Rev. Lett. 62, 2088 (1989).ADSCrossRefGoogle Scholar
  32. [28]
    L. Mitas, E.L. Shirley and D.M. Ceprley, J. Chem. Phys. 95, 3467 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • James F. Annett
    • 1
  1. 1.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations