Density Functional Theory of the Superconducting State

  • E. K. U. Gross
  • Stefan Kurth
  • Klaus Capelle
  • Martin Lüders
Part of the NATO ASI Series book series (NSSB, volume 337)

Abstract

Traditional superconductivity of pure metals is well described as a phenomenon of homogeneous media. Due to the relatively large coherence length (102 – 104 Å), inhomogeneities on the scale of the lattice constant can be neglected. In the new high-T c materials the situation is different. Experimental coherence lengths of the order of 10 Å suggest that inhomogeneities on the scale of the lattice constant have to be taken into account in a proper description of these materials.

Keywords

Entropy Coherence Exter Wolfram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    D. Mattis, E. Lieb, J. Math. Phys. 2, 602 (1961).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L.N. Oliveira, E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).ADSCrossRefGoogle Scholar
  4. [4]
    L.P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JETP 9, 1364 (1959)].Google Scholar
  5. [5]
    V.L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
  6. [6]
    N.D. Mermin, Phys. Rev. 137, A1441 (1965).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    P.G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).MATHGoogle Scholar
  8. [8]
    S. Kurth, K. Capelle, M. Lüders, E.K.U. Gross, to be published.Google Scholar
  9. [9]
    E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory (Adam Hilger, Bristol, 1991).MATHGoogle Scholar
  10. [10]
    H. Fröhlich, Proc. Roy. Soc. (London) A 215, 291 (1952).ADSMATHCrossRefGoogle Scholar
  11. [11]
    J. Bardeen, D. Pines, Phys. Rev. 99, 1140 (1955).ADSMATHCrossRefGoogle Scholar
  12. [12]
    N.N. Bogoliubov, Sov.Phys. JETP 7, 41 (1958).MathSciNetGoogle Scholar
  13. [13]
    M. Gell-Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    S. Kurth, E.K.U. Gross, to be published.Google Scholar
  15. [15]
    W. Kohn, E.K.U. Gross, L.N. Oliveira, J.de Physique 50, 2601 (1989).CrossRefGoogle Scholar
  16. [16]
    K. Capelle, E.K.U. Gross, Int.J.Quant.Chem.Symp. (1994).Google Scholar
  17. [17]
    G. Vignale, M. Rasolt, Phys.Rev.Lett. 59, 2360 (1987).ADSCrossRefGoogle Scholar
  18. [18]
    G. Vignale, M. Rasolt, Phys.Rev. B 37, 10685 (1988).ADSCrossRefGoogle Scholar
  19. [19]
    M. Lüders, E.K.U. Gross, Int.J.Quant.Chem.Symp. (1994).Google Scholar
  20. [20]
    O.-J. Wacker, R. Kümmel, E.K.U. Gross, Phys.Rev.Lett. 73, 2915 (1994).ADSCrossRefGoogle Scholar
  21. [21]
    S. Wolfram, Mathematica 2.1, (Wolfram Research 1988–92).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • E. K. U. Gross
    • 1
  • Stefan Kurth
    • 1
  • Klaus Capelle
    • 1
  • Martin Lüders
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations