Skip to main content

Diversity of Denitrifiers and Their Enzymes

  • Chapter

Part of the book series: NATO Conference Series ((E,volume 9))

Abstract

Carbon cycling massively involves all living things as either fixers or liberators, and light continually and specifically drives replenishement reactions. In contrast, the gain and loss events in the cycling of nitrogen are restricted to those procaryotes that fix elemental nitrogen, those that nitrify autotrophically, and those that liberate elemental nitrogen. Despite the gains of continual fixation, losses of nutrient nitrogen from sediments and soils are also unrelenting (Hauck, 1981). Removal of inorganic nitrogen is attributable indirectly to nitrification and directly to denitrification. Nitrate is generated by the one and reduced to elemental nitrogen by the other.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auling, G., Reh, M., Lee, C.M., and Schlegel, H.G., 1978, Pseudomonaspseudoflava a new species of hydrogen-oxidizing bacteria: its differentiation from Pseudomonasflava and other yellow-pigmented, gram-negative, hydrogen-oxidizing species, Int. J. Syst. Bacteriol., 28:82.

    Google Scholar 

  • Averill, B.A., and Tiedje, J.M., 1982, Hypothesis: the chemical mecha- nism of microbial denitrification, FEBS Lett., 138: 8.

    Article  Google Scholar 

  • Balderston, W.L., Sherr, B., and Payne, W.J., 1976, Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus, Appl. Envriron Microbiol., 31: 504.

    Google Scholar 

  • Barbaree, J.M., and Payne, W.J., 1967, Products of denitrification by a marine bacterium as revealed by gas chromatography, Mar. Biol. (Berlin) 1: 136.

    Article  Google Scholar 

  • Betlach, M.R., 1982, Evolution of bacterial denitrification and de-nitrifier diversity, Antonie van Leeuwenhoek J. Microbiol. Serol., 48: 585.

    Article  Google Scholar 

  • Betlach, M.R., and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42: 1074.

    Google Scholar 

  • Bollag, J.M., and Kurek, E.J., 1980, Nitrite and nitrous oxide accumulation during denitrification in the presence of pesticide derivatives, Appl. Environ. Microbiol., 39: 845.

    Google Scholar 

  • Brannan, D.K., and Caldwell, D.E., 1980, Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds, Appl. Environ. Microbiol., 40: 211.

    Google Scholar 

  • Bremner, J.M., and Blackmer, A.M., 1978, Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen, Science, 199: 295.

    Google Scholar 

  • Calder, K., Burke, K.A., and Lascelles, J., 1980, Introduction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans, Arch. MicrobioL., 126: 149.

    Google Scholar 

  • Carlson, C.A., and Ingraham, J.L., 1983, Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Para-coccus denitrificans, Appl. Environ. Microbiol., 45: 1247.

    Google Scholar 

  • Chatelain, R., 1969, Réduction des nitrites par Alcaligenes odorans var. viridans, Ann. Inst. Pasteur, 116, 498.

    Google Scholar 

  • Christensen, P., and Cook, F.D., 1978, Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio, Int. J. Syst. Bacteriol., 28: 367.

    Google Scholar 

  • Chung, C.W., and Najjar, V.A., 1956, Cofactor requirements for enzymatic denitrification. H. Nitric Oxide reductase, J. Biol. Chem., 218: 627.

    Google Scholar 

  • Cox, C.D., Jr., Payne, W.J., and DerVartanian, D.V., 1971, Electron paramagnetic resonance (EPR) studies of the nature of hemoproteins in nitrite and nitric oxide reduction, Biochem. Biophys. Acta, 253: 290.

    Google Scholar 

  • Daniel, R.M., Limmer, A.W., Steele, K.W., and Smith, I.M., 1982, Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains, J. gen. Microbiol., 128: 1811.

    Google Scholar 

  • Daniel, R.M., Steele, J.W., and Limner, A.W., 1980, Denitrification by rhizobia. A possible factor contributing to nitrogen losses from soils, N. Z. Agric. Sci., 14: 109.

    Google Scholar 

  • Downey, R.J., 1962, Naphtoquinone intermediate in the respiration of Bacillus stearothermophilus, J. Bacteriol., 84: 953.

    Google Scholar 

  • Downey, R.J., Kiszkiss, D.F., and Nuner, J.H., 1969, Influence of oxygen on development of nitrate respiration in Bacillus stearothermophilus, J. Bacteriol., 98: 1056.

    Google Scholar 

  • Dunstan, R.H., Kelley, B.C., and Nicholas, D.J.D., 1982, Fixation of dinitrogen derived from denitrification of nitrate in a photosynthetic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans, J. Bacteriol., 150: 100.

    Google Scholar 

  • Evans, W.C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature (London), 270: 17.

    Google Scholar 

  • Federova, R.K., Milekhina, E.I., and Il’Yukhina, N.I., 1973, On the possibilities of using the “gas-exchange” method for the detection of extraterrestrial life: identification of nitrogen-fixing organisms, Izv. Akad Nauk. SSR Ser. Biol., 6: 797.

    Google Scholar 

  • Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1979, Nitric oxide as an intermediate in denitrification: Evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Commun., 91: 10.

    Google Scholar 

  • Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1980, Nitrous oxide from soil denitrification: factors controlling its biological production, Science, 208: 749.

    Google Scholar 

  • Forget, P., and DerVartanian, D.V., 1972, The bacterial nitrate reductases: EPR studies on nitrate reductase A from Micrococcus denitrificans, Biochim. Biophys. Acta, 256: 600.

    Google Scholar 

  • Gamble, T.N., Betlach, M.R., Tiedje, J.M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33: 926.

    Google Scholar 

  • Garber, E.A.E., Castignetti, D., and Hollocher, T.C., 1982, Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifying Paracoccus denitrificans, Biochem. Biophys. Res. Commun., 107: 1504.

    Google Scholar 

  • Grant, M.A., and Payne, W.J., 1981, Denitrification by strains of Neisseria, Kingella, and Chromobacterium, Int. J. Syst. Bacteriol., 31: 276.

    Article  Google Scholar 

  • Grant, M.A., and Payne, W.J., 1982, Effects of pesticides on denitrifying activity in salt marsh sediment, J. Environ. Qual., 11: 369.

    Google Scholar 

  • Greenberg, E.P., and Becker, G.E., 1977, Nitrous oxides as end product of denitrification by strains of fluorescent pseudomonads, Can. J. Microbiol., 23: 903.

    Google Scholar 

  • Hart, L.T., Larson, A.D., and McCleskey, C.S., 1965, Denitrification by Corynebacterium nephridii, J. Bacteriol., 89: 1104.

    Google Scholar 

  • Hauck, R.D., 1981, Nitrogen fertilizer effects on nitrogen cycle processes, in: “Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts”, F.E. Clark and T. Rosswall, eds., Ecol. Bull., 33:551.

    Google Scholar 

  • Hendrie, M.S., Holding, A.J., and Shewan, J.M., 1974, Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: Status of the named species of Alcaligenes and Achromobacter. Request for an opinion, Int. J. Syst. Bacteriol., 24: 534.

    Google Scholar 

  • Holloche13 T.ÇS, Garber, E., Cooper, A.J.L., and Reiman, R.E., 1980, N, N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification, J.Biol.Chem., 255: 5027.

    Google Scholar 

  • Huynh, B.H., Liu, M.C., Moura, J.J.G., Moura, I., Ljungdahl, P.O., Münck, E., Payne, W.J., Peck, H.D., Jr., DerVartanian, D.V., and Le-Gall, J., 1982, Mössbauer and EPR studies on nitrite reductase from Thiobacillus denitrificans, J. Biol. Chem., 257: 9576.

    Google Scholar 

  • Iwasaki, H., and Matsubara, T., 1972, A nitrite reductase from Achromobacter cycloclastes, J. Biochem (Tokyo), 71: 645.

    Google Scholar 

  • Iwasaki, H., Saigo, T., and Matsubara, T., 1980, Copper as a controlling factor of anaerobic growth under N20 and biosynthesis of N20 reductase in denitrifying bacteria, Plant Cell Physiol. 21: 1573.

    Google Scholar 

  • Iwasaki, H., Shidara, S., Suzuki, H., and Mori, T., 1963, Studies on denitrification. VII. Further purification and properties of denitrifying enzyme, J. Biochem. (Tokyo), 53: 299.

    Google Scholar 

  • Kaspar, H.E., and Tiedje, J.M., 1980, Response of electron-capture detector to hydrogen, oxygen, nitrogen, carbon dioxide, nitric oxide and nitrous oxide, J. Chromatogr., 193: 142.

    Google Scholar 

  • Kristjansson, J.K., and Hollocher, T.C., 1980, First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization, J. Biol. Chem., 255: 704.

    Google Scholar 

  • Kristjansson, J.K., and Hollocher, T.C., 1981, Partial purification and characterisation of nitrous oxide reductase from Paracoccus denitrificans, Curr. Microbiol., 6: 247.

    Google Scholar 

  • Kuhn, D.A., and Gregory, D.A., 1978, Emendation of Simonsiella muelleri Schmidt and description of Simonsiella steedae sp. nov. Curr. Microbiol., 1: 11.

    Google Scholar 

  • LeGall, J., Payne, W.J., Morgan, T.V., and DerVartanian, D.V., 1979. On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions, Biochem. Biophys. Res. Commun., 87: 355.

    Google Scholar 

  • Liu, M.C., Payne, W.J., Peck, H.D., Jr., and LeGall, J., 1983, Comparison of cytochromes from anaerobically grown cells of Pseudomonas perfectomarinus, J. Bacteriol., 154: 278.

    Google Scholar 

  • Liu, M.C., Peck, H.D., Jr., Payne, W.J., Anderson, J.L., DerVartanian, D.V., and LeGall, J., 1981, purification and properties of the diheme cytochrome (cytochrome c52) from Pseudomonas perfectomarinus, FEBS Lett., 129: 155.

    Google Scholar 

  • Maratea, D., and Blakemore, R.P., 1981, Aquaspirillum magnetotactitum sp. nov., a magnetic spirillum, Int J. Syst. Bacteriol., 31: 452.

    Google Scholar 

  • Matsubara, T., 1975, The participation of N20 to N2 by a denitrifying bacterium, J. Biocheml (Tokyo), 77: 627.

    Google Scholar 

  • Matsubara, T., Frunzke, K., and Zumft, per of the products of nitrite respiration in Pseudomonas perfectomarinus, J. Bacterial., 149: 816.

    Google Scholar 

  • Matsubara, T., and Iwasaki, H., 1972, Nitric oxide-reducing activity of Alcaligenes faecalis cytochrome cd, J. Biochem. (Tokyo), 72: 57.

    Google Scholar 

  • Matsubara, T., and Zumft, W.G., 1982, Indentification of a copper protein as part of the nitrous oxide-reducing system in nitrite-respiring (denitrifying) pseudomonads. Arch. Microbiol., 132: 322.

    Google Scholar 

  • McKenney, D.J., Shuttleworth, K.F., Vriesacker, J.R., and Findlay, W.I., 1982, Production and loss of nitric oxide from denitrification in anaerobic Brookston clay, Appl. Environ. Microbiol., 43: 534.

    Google Scholar 

  • Miyata, M., 1971, Studies on denitrification. XIV. The electron donating system in the reduction of nitric oxide and nitrate, J. Biochem. (Tokyo), 70: 205.

    Google Scholar 

  • Neyra, C.A., Dtibereiner, J., Lalande, R., and Knowles, R., 1977, Denitrification by N2-fixing Spirillum lipoferum, Can. J. Microbiol., 23: 300.

    Article  Google Scholar 

  • Parsonage, D., and Ferguson, S.J., 1983, Reassessment of electron flow to nitrate reductase that are coupled to energy conservation in Paracoccus denitrificans, FEBS Lett., 153: 108.

    Article  Google Scholar 

  • Payne, W.J., 1981, Denitrification, Wiley-Interscience, New York. Payne, W.J., and Balderston, W.L., 1978, Denitrification, in: “Microbiology-1978”, D. Schlessinger, ed., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Payne, W.J., and Grant, M.A., 1981, Overview of denitrification, in: “Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen”, J.M. Lyons, R.C. Balentine, D.A. Phillips, D.W. Rains, and R.C. Huffaker, eds., Plenum Press, New York.

    Google Scholar 

  • Payne, W.J., Grant, M.A., Shapleigh, J., and Hoffman, P., 1982, Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species, J. Bacteriol., 152:915.

    Google Scholar 

  • Payne, W.J., and Riley, P.S., 1969, Suppression by nitrate of enzymatic reduction of nitric oxide, Proc. Soc. Exp. Biol. Med., 132: 258.

    Google Scholar 

  • Payne, W.J., Riley, P.S., and Cox, C.D., Jr., 1971, Separate nitrite, nitric oxide and nitrous oxide reducing fractions from Pseudomonas perfectomarinus, J. Bacteriol., 106: 356.

    Google Scholar 

  • Pf itzner, J., and Schlegel, H.G., 1973, Denitrifikation bei Hydrogenomonas eutropha Stamm H16, Arch. Mikrobiol., 90: 199.

    Article  Google Scholar 

  • Pichinoty, F., Mandel, M., and Garcia, J.-L., 1979, The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils, J. Gen. Microbiol., 115: 419.

    Google Scholar 

  • Renner, E.D., and Becker, G.E., 1970, Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii, J. Bacterial., 101: 821.

    Google Scholar 

  • Rhodes, M.E., Best, A.N., and Payne, W.J., 1963, Electron donors and cofactors for denitrification by Pseudomonas perfectomarinus, Can. J. Microbiol., 9: 799.

    Google Scholar 

  • Rosso, J.-P., Forget, P., and Pichinoty, F., 1973, Les nitrate-réduc-tases bactériennes. Solubilisation, purification et propriétés de l’enzyme A de Micrococcus halodenitrificans, Biochim. Biophys. Acta, 321: 443.

    Article  Google Scholar 

  • Sawada, E., and Satoh, T., 1980, Periplasmic location of dissimilatory nitrate and nitrite reductases in a denitrifying phototrophic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans, Plant Cell Physiol., 21: 205.

    Google Scholar 

  • Sawada, E., Satoh, T., and Kitamura, H., 1978, Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium, Plant cell Physiol., 19: 1339.

    Google Scholar 

  • Sawhney, V., and Nicholas, D.J.D., 1978, Sulphide-linked nitrite reductase from Thiobacillus denitrificans with cytochrome oxidase activity: purification and properties, J. Gen. Microbiol., 106: 119.

    Google Scholar 

  • Sias, S.R., Stouthamer, A.H., and Ingraham, J.L., 1980, The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes, J. Gen. Microbiol. 118: 229.

    Google Scholar 

  • Smith, M.S., 1982, Dissimilatory reduction of NO2_ to NH4+ and N,0 by a soil Citrobacter sp., Appl. Environ. Microbiol., 43: 854.

    Google Scholar 

  • Sorensen, J., Tiedje, J.M., and Firestone, R.B., 1980, Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Apl. Environ. Microbiol., 39: 105.

    Google Scholar 

  • Stanier, R.Y., 1947, Studies on nonfruiting mysobacteria I. Cytophaga johnsonae, n. sp., a chitin-decomposing myxobacterium. J. Bacteriol., 53: 297.

    Google Scholar 

  • Stouthamer, A.H., Boogerd, F.C., and van Versveld, H.W., 1982, The bioenergetics of denitrification, Antonie van Leeuwenhoek J. Microbiol. Serol., 48: 545.

    Article  Google Scholar 

  • Tam, T.-Y., and Knowles, R., 1979, Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeruginosa, Can. J. Microbiol., 25: 1133.

    Google Scholar 

  • Tanner, A.C.R., Badger, S., Lai, C.-H., Lisgarten, M.A., Visconti, R.A., and Socransky, S.S., 1981, Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease, Int. J. Bacteriol., 31: 432.

    Google Scholar 

  • Terai, H., and Mori, T., 1975, Studies on phosphorylation coupled with denitrification and aerobic respiration in Pseudomonas denitrificans, Bot. Mag., 88: 231.

    Google Scholar 

  • Van’t Riet, J., Wientjes, F.B., Van Doorn, J., and Planta, R.J., 1979, Purification and characterization of the respiratory nitrate reductase of Bacillus licheniformis, Biochim. Biophys. Acta, 576: 347.

    Google Scholar 

  • Werber, M.M., and Mevarech, M., 1978, Induction of a dissimilatory pathway of nitrate in Halobacterium of the Dead Sea, Arch. Biochem. Biophys., 186: 60.

    Article  Google Scholar 

  • Wharton, D.C., and Weintraub, S.T., 1980, Identification of nitric oxide and nitrous oxide as products of nitrite reduction by Pseudomonas cytochrome oxidase (nitrite reductase). Biochem. Biophys. Res. Commun., 97: 236.

    Google Scholar 

  • Yarbrough, J.M., Rake, J.B., and Eagon, R.G., 1980, Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes, Appl. Environ. Microbiol., 39: 831.

    Google Scholar 

  • Yoshinari, T., 1980, N220 reduction by Vibrio succinogenes, Appl. Environ. Microbiol., 39: 81.

    Google Scholar 

  • Yoshinari, T., and Knowles, R., 1976, Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Commun., 69: 705.

    Article  Google Scholar 

  • Zablolowicz, R.M., and Focht, D.D., 1979, Denitrification and anaerobic nitrate-dependent acetylene reduction in cowpea rhizobium, J. Gen. Microbiol., 111: 445.

    Google Scholar 

  • Zumft, W.G., and Frunzke, K., 1982, Discrimination of ascorbate-dependent nonenzymatic and enzymatic membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus, Biochim. Biophys. Acta, 681: 459.

    Google Scholar 

  • Zumft, W.G., and Matsubara, T., 1982, A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus, FEBS Lett., 148–107.

    Google Scholar 

  • Zumft, W.G., Sherr, B.F., and Payne, W.J., 1979, A reappraisal of the nitric oxide-binding protein of denitrifying Pseudomonas, Biochem. Biophys. Res. Commun., 88: 1230.

    Article  Google Scholar 

  • Zumft, W.G., and Vega, J.-M., 1979, Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine de-nitrifier Pseudomonas perfectomarinus, Biochim. Biophys. Acta, 548: 484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Payne, W.J. (1985). Diversity of Denitrifiers and Their Enzymes. In: Golterman, H.L. (eds) Denitrification in the Nitrogen Cycle. NATO Conference Series, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9972-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9972-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9974-3

  • Online ISBN: 978-1-4757-9972-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics