Diversity of Denitrifiers and Their Enzymes

  • W. J. Payne
Part of the NATO Conference Series book series (NATOCS, volume 9)


Carbon cycling massively involves all living things as either fixers or liberators, and light continually and specifically drives replenishement reactions. In contrast, the gain and loss events in the cycling of nitrogen are restricted to those procaryotes that fix elemental nitrogen, those that nitrify autotrophically, and those that liberate elemental nitrogen. Despite the gains of continual fixation, losses of nutrient nitrogen from sediments and soils are also unrelenting (Hauck, 1981). Removal of inorganic nitrogen is attributable indirectly to nitrification and directly to denitrification. Nitrate is generated by the one and reduced to elemental nitrogen by the other.


Nitric Oxide Electron Paramagnetic Resonance Nitrous Oxide Nitrate Reductase Nitrite Reductase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auling, G., Reh, M., Lee, C.M., and Schlegel, H.G., 1978, Pseudomonaspseudoflava a new species of hydrogen-oxidizing bacteria: its differentiation from Pseudomonasflava and other yellow-pigmented, gram-negative, hydrogen-oxidizing species, Int. J. Syst. Bacteriol., 28:82. Google Scholar
  2. Averill, B.A., and Tiedje, J.M., 1982, Hypothesis: the chemical mecha- nism of microbial denitrification, FEBS Lett., 138: 8.CrossRefGoogle Scholar
  3. Balderston, W.L., Sherr, B., and Payne, W.J., 1976, Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus, Appl. Envriron Microbiol., 31: 504.Google Scholar
  4. Barbaree, J.M., and Payne, W.J., 1967, Products of denitrification by a marine bacterium as revealed by gas chromatography, Mar. Biol. (Berlin) 1: 136.CrossRefGoogle Scholar
  5. Betlach, M.R., 1982, Evolution of bacterial denitrification and de-nitrifier diversity, Antonie van Leeuwenhoek J. Microbiol. Serol., 48: 585.CrossRefGoogle Scholar
  6. Betlach, M.R., and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42: 1074.Google Scholar
  7. Bollag, J.M., and Kurek, E.J., 1980, Nitrite and nitrous oxide accumulation during denitrification in the presence of pesticide derivatives, Appl. Environ. Microbiol., 39: 845.Google Scholar
  8. Brannan, D.K., and Caldwell, D.E., 1980, Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds, Appl. Environ. Microbiol., 40: 211.Google Scholar
  9. Bremner, J.M., and Blackmer, A.M., 1978, Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen, Science, 199: 295.Google Scholar
  10. Calder, K., Burke, K.A., and Lascelles, J., 1980, Introduction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans, Arch. MicrobioL., 126: 149.Google Scholar
  11. Carlson, C.A., and Ingraham, J.L., 1983, Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Para-coccus denitrificans, Appl. Environ. Microbiol., 45: 1247.Google Scholar
  12. Chatelain, R., 1969, Réduction des nitrites par Alcaligenes odorans var. viridans, Ann. Inst. Pasteur, 116, 498.Google Scholar
  13. Christensen, P., and Cook, F.D., 1978, Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio, Int. J. Syst. Bacteriol., 28: 367.Google Scholar
  14. Chung, C.W., and Najjar, V.A., 1956, Cofactor requirements for enzymatic denitrification. H. Nitric Oxide reductase, J. Biol. Chem., 218: 627.Google Scholar
  15. Cox, C.D., Jr., Payne, W.J., and DerVartanian, D.V., 1971, Electron paramagnetic resonance (EPR) studies of the nature of hemoproteins in nitrite and nitric oxide reduction, Biochem. Biophys. Acta, 253: 290.Google Scholar
  16. Daniel, R.M., Limmer, A.W., Steele, K.W., and Smith, I.M., 1982, Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains, J. gen. Microbiol., 128: 1811.Google Scholar
  17. Daniel, R.M., Steele, J.W., and Limner, A.W., 1980, Denitrification by rhizobia. A possible factor contributing to nitrogen losses from soils, N. Z. Agric. Sci., 14: 109.Google Scholar
  18. Downey, R.J., 1962, Naphtoquinone intermediate in the respiration of Bacillus stearothermophilus, J. Bacteriol., 84: 953.Google Scholar
  19. Downey, R.J., Kiszkiss, D.F., and Nuner, J.H., 1969, Influence of oxygen on development of nitrate respiration in Bacillus stearothermophilus, J. Bacteriol., 98: 1056.Google Scholar
  20. Dunstan, R.H., Kelley, B.C., and Nicholas, D.J.D., 1982, Fixation of dinitrogen derived from denitrification of nitrate in a photosynthetic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans, J. Bacteriol., 150: 100.Google Scholar
  21. Evans, W.C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature (London), 270: 17.Google Scholar
  22. Federova, R.K., Milekhina, E.I., and Il’Yukhina, N.I., 1973, On the possibilities of using the “gas-exchange” method for the detection of extraterrestrial life: identification of nitrogen-fixing organisms, Izv. Akad Nauk. SSR Ser. Biol., 6: 797.Google Scholar
  23. Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1979, Nitric oxide as an intermediate in denitrification: Evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Commun., 91: 10.Google Scholar
  24. Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1980, Nitrous oxide from soil denitrification: factors controlling its biological production, Science, 208: 749.Google Scholar
  25. Forget, P., and DerVartanian, D.V., 1972, The bacterial nitrate reductases: EPR studies on nitrate reductase A from Micrococcus denitrificans, Biochim. Biophys. Acta, 256: 600.Google Scholar
  26. Gamble, T.N., Betlach, M.R., Tiedje, J.M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33: 926.Google Scholar
  27. Garber, E.A.E., Castignetti, D., and Hollocher, T.C., 1982, Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifying Paracoccus denitrificans, Biochem. Biophys. Res. Commun., 107: 1504.Google Scholar
  28. Grant, M.A., and Payne, W.J., 1981, Denitrification by strains of Neisseria, Kingella, and Chromobacterium, Int. J. Syst. Bacteriol., 31: 276.CrossRefGoogle Scholar
  29. Grant, M.A., and Payne, W.J., 1982, Effects of pesticides on denitrifying activity in salt marsh sediment, J. Environ. Qual., 11: 369.Google Scholar
  30. Greenberg, E.P., and Becker, G.E., 1977, Nitrous oxides as end product of denitrification by strains of fluorescent pseudomonads, Can. J. Microbiol., 23: 903.Google Scholar
  31. Hart, L.T., Larson, A.D., and McCleskey, C.S., 1965, Denitrification by Corynebacterium nephridii, J. Bacteriol., 89: 1104.Google Scholar
  32. Hauck, R.D., 1981, Nitrogen fertilizer effects on nitrogen cycle processes, in: “Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts”, F.E. Clark and T. Rosswall, eds., Ecol. Bull., 33:551.Google Scholar
  33. Hendrie, M.S., Holding, A.J., and Shewan, J.M., 1974, Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: Status of the named species of Alcaligenes and Achromobacter. Request for an opinion, Int. J. Syst. Bacteriol., 24: 534.Google Scholar
  34. Holloche13 T.ÇS, Garber, E., Cooper, A.J.L., and Reiman, R.E., 1980, N, N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification, J.Biol.Chem., 255: 5027.Google Scholar
  35. Huynh, B.H., Liu, M.C., Moura, J.J.G., Moura, I., Ljungdahl, P.O., Münck, E., Payne, W.J., Peck, H.D., Jr., DerVartanian, D.V., and Le-Gall, J., 1982, Mössbauer and EPR studies on nitrite reductase from Thiobacillus denitrificans, J. Biol. Chem., 257: 9576.Google Scholar
  36. Iwasaki, H., and Matsubara, T., 1972, A nitrite reductase from Achromobacter cycloclastes, J. Biochem (Tokyo), 71: 645.Google Scholar
  37. Iwasaki, H., Saigo, T., and Matsubara, T., 1980, Copper as a controlling factor of anaerobic growth under N20 and biosynthesis of N20 reductase in denitrifying bacteria, Plant Cell Physiol. 21: 1573.Google Scholar
  38. Iwasaki, H., Shidara, S., Suzuki, H., and Mori, T., 1963, Studies on denitrification. VII. Further purification and properties of denitrifying enzyme, J. Biochem. (Tokyo), 53: 299.Google Scholar
  39. Kaspar, H.E., and Tiedje, J.M., 1980, Response of electron-capture detector to hydrogen, oxygen, nitrogen, carbon dioxide, nitric oxide and nitrous oxide, J. Chromatogr., 193: 142.Google Scholar
  40. Kristjansson, J.K., and Hollocher, T.C., 1980, First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization, J. Biol. Chem., 255: 704.Google Scholar
  41. Kristjansson, J.K., and Hollocher, T.C., 1981, Partial purification and characterisation of nitrous oxide reductase from Paracoccus denitrificans, Curr. Microbiol., 6: 247.Google Scholar
  42. Kuhn, D.A., and Gregory, D.A., 1978, Emendation of Simonsiella muelleri Schmidt and description of Simonsiella steedae sp. nov. Curr. Microbiol., 1: 11.Google Scholar
  43. LeGall, J., Payne, W.J., Morgan, T.V., and DerVartanian, D.V., 1979. On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions, Biochem. Biophys. Res. Commun., 87: 355.Google Scholar
  44. Liu, M.C., Payne, W.J., Peck, H.D., Jr., and LeGall, J., 1983, Comparison of cytochromes from anaerobically grown cells of Pseudomonas perfectomarinus, J. Bacteriol., 154: 278.Google Scholar
  45. Liu, M.C., Peck, H.D., Jr., Payne, W.J., Anderson, J.L., DerVartanian, D.V., and LeGall, J., 1981, purification and properties of the diheme cytochrome (cytochrome c52) from Pseudomonas perfectomarinus, FEBS Lett., 129: 155.Google Scholar
  46. Maratea, D., and Blakemore, R.P., 1981, Aquaspirillum magnetotactitum sp. nov., a magnetic spirillum, Int J. Syst. Bacteriol., 31: 452.Google Scholar
  47. Matsubara, T., 1975, The participation of N20 to N2 by a denitrifying bacterium, J. Biocheml (Tokyo), 77: 627.Google Scholar
  48. Matsubara, T., Frunzke, K., and Zumft, per of the products of nitrite respiration in Pseudomonas perfectomarinus, J. Bacterial., 149: 816.Google Scholar
  49. Matsubara, T., and Iwasaki, H., 1972, Nitric oxide-reducing activity of Alcaligenes faecalis cytochrome cd, J. Biochem. (Tokyo), 72: 57.Google Scholar
  50. Matsubara, T., and Zumft, W.G., 1982, Indentification of a copper protein as part of the nitrous oxide-reducing system in nitrite-respiring (denitrifying) pseudomonads. Arch. Microbiol., 132: 322.Google Scholar
  51. McKenney, D.J., Shuttleworth, K.F., Vriesacker, J.R., and Findlay, W.I., 1982, Production and loss of nitric oxide from denitrification in anaerobic Brookston clay, Appl. Environ. Microbiol., 43: 534.Google Scholar
  52. Miyata, M., 1971, Studies on denitrification. XIV. The electron donating system in the reduction of nitric oxide and nitrate, J. Biochem. (Tokyo), 70: 205.Google Scholar
  53. Neyra, C.A., Dtibereiner, J., Lalande, R., and Knowles, R., 1977, Denitrification by N2-fixing Spirillum lipoferum, Can. J. Microbiol., 23: 300.CrossRefGoogle Scholar
  54. Parsonage, D., and Ferguson, S.J., 1983, Reassessment of electron flow to nitrate reductase that are coupled to energy conservation in Paracoccus denitrificans, FEBS Lett., 153: 108.CrossRefGoogle Scholar
  55. Payne, W.J., 1981, Denitrification, Wiley-Interscience, New York. Payne, W.J., and Balderston, W.L., 1978, Denitrification, in: “Microbiology-1978”, D. Schlessinger, ed., American Society for Microbiology, Washington, D.C.Google Scholar
  56. Payne, W.J., and Grant, M.A., 1981, Overview of denitrification, in: “Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen”, J.M. Lyons, R.C. Balentine, D.A. Phillips, D.W. Rains, and R.C. Huffaker, eds., Plenum Press, New York.Google Scholar
  57. Payne, W.J., Grant, M.A., Shapleigh, J., and Hoffman, P., 1982, Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species, J. Bacteriol., 152:915. Google Scholar
  58. Payne, W.J., and Riley, P.S., 1969, Suppression by nitrate of enzymatic reduction of nitric oxide, Proc. Soc. Exp. Biol. Med., 132: 258.Google Scholar
  59. Payne, W.J., Riley, P.S., and Cox, C.D., Jr., 1971, Separate nitrite, nitric oxide and nitrous oxide reducing fractions from Pseudomonas perfectomarinus, J. Bacteriol., 106: 356.Google Scholar
  60. Pf itzner, J., and Schlegel, H.G., 1973, Denitrifikation bei Hydrogenomonas eutropha Stamm H16, Arch. Mikrobiol., 90: 199.CrossRefGoogle Scholar
  61. Pichinoty, F., Mandel, M., and Garcia, J.-L., 1979, The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils, J. Gen. Microbiol., 115: 419.Google Scholar
  62. Renner, E.D., and Becker, G.E., 1970, Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii, J. Bacterial., 101: 821.Google Scholar
  63. Rhodes, M.E., Best, A.N., and Payne, W.J., 1963, Electron donors and cofactors for denitrification by Pseudomonas perfectomarinus, Can. J. Microbiol., 9: 799.Google Scholar
  64. Rosso, J.-P., Forget, P., and Pichinoty, F., 1973, Les nitrate-réduc-tases bactériennes. Solubilisation, purification et propriétés de l’enzyme A de Micrococcus halodenitrificans, Biochim. Biophys. Acta, 321: 443.CrossRefGoogle Scholar
  65. Sawada, E., and Satoh, T., 1980, Periplasmic location of dissimilatory nitrate and nitrite reductases in a denitrifying phototrophic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans, Plant Cell Physiol., 21: 205.Google Scholar
  66. Sawada, E., Satoh, T., and Kitamura, H., 1978, Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium, Plant cell Physiol., 19: 1339.Google Scholar
  67. Sawhney, V., and Nicholas, D.J.D., 1978, Sulphide-linked nitrite reductase from Thiobacillus denitrificans with cytochrome oxidase activity: purification and properties, J. Gen. Microbiol., 106: 119.Google Scholar
  68. Sias, S.R., Stouthamer, A.H., and Ingraham, J.L., 1980, The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes, J. Gen. Microbiol. 118: 229.Google Scholar
  69. Smith, M.S., 1982, Dissimilatory reduction of NO2_ to NH4+ and N,0 by a soil Citrobacter sp., Appl. Environ. Microbiol., 43: 854.Google Scholar
  70. Sorensen, J., Tiedje, J.M., and Firestone, R.B., 1980, Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Apl. Environ. Microbiol., 39: 105.Google Scholar
  71. Stanier, R.Y., 1947, Studies on nonfruiting mysobacteria I. Cytophaga johnsonae, n. sp., a chitin-decomposing myxobacterium. J. Bacteriol., 53: 297.Google Scholar
  72. Stouthamer, A.H., Boogerd, F.C., and van Versveld, H.W., 1982, The bioenergetics of denitrification, Antonie van Leeuwenhoek J. Microbiol. Serol., 48: 545.CrossRefGoogle Scholar
  73. Tam, T.-Y., and Knowles, R., 1979, Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeruginosa, Can. J. Microbiol., 25: 1133.Google Scholar
  74. Tanner, A.C.R., Badger, S., Lai, C.-H., Lisgarten, M.A., Visconti, R.A., and Socransky, S.S., 1981, Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease, Int. J. Bacteriol., 31: 432.Google Scholar
  75. Terai, H., and Mori, T., 1975, Studies on phosphorylation coupled with denitrification and aerobic respiration in Pseudomonas denitrificans, Bot. Mag., 88: 231.Google Scholar
  76. Van’t Riet, J., Wientjes, F.B., Van Doorn, J., and Planta, R.J., 1979, Purification and characterization of the respiratory nitrate reductase of Bacillus licheniformis, Biochim. Biophys. Acta, 576: 347.Google Scholar
  77. Werber, M.M., and Mevarech, M., 1978, Induction of a dissimilatory pathway of nitrate in Halobacterium of the Dead Sea, Arch. Biochem. Biophys., 186: 60.CrossRefGoogle Scholar
  78. Wharton, D.C., and Weintraub, S.T., 1980, Identification of nitric oxide and nitrous oxide as products of nitrite reduction by Pseudomonas cytochrome oxidase (nitrite reductase). Biochem. Biophys. Res. Commun., 97: 236.Google Scholar
  79. Yarbrough, J.M., Rake, J.B., and Eagon, R.G., 1980, Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes, Appl. Environ. Microbiol., 39: 831.Google Scholar
  80. Yoshinari, T., 1980, N220 reduction by Vibrio succinogenes, Appl. Environ. Microbiol., 39: 81.Google Scholar
  81. Yoshinari, T., and Knowles, R., 1976, Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Commun., 69: 705.CrossRefGoogle Scholar
  82. Zablolowicz, R.M., and Focht, D.D., 1979, Denitrification and anaerobic nitrate-dependent acetylene reduction in cowpea rhizobium, J. Gen. Microbiol., 111: 445.Google Scholar
  83. Zumft, W.G., and Frunzke, K., 1982, Discrimination of ascorbate-dependent nonenzymatic and enzymatic membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus, Biochim. Biophys. Acta, 681: 459.Google Scholar
  84. Zumft, W.G., and Matsubara, T., 1982, A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus, FEBS Lett., 148–107.Google Scholar
  85. Zumft, W.G., Sherr, B.F., and Payne, W.J., 1979, A reappraisal of the nitric oxide-binding protein of denitrifying Pseudomonas, Biochem. Biophys. Res. Commun., 88: 1230.CrossRefGoogle Scholar
  86. Zumft, W.G., and Vega, J.-M., 1979, Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine de-nitrifier Pseudomonas perfectomarinus, Biochim. Biophys. Acta, 548: 484.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • W. J. Payne
    • 1
  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations