Advertisement

Flux of NOx between Soil and Atmosphere: Importance and Soil Microbial Metabolism

  • Ralf Conrad
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 56)

Abstract

Nitric oxide and nitrogen dioxide (NO + NO2 = NOx) are trace gases which occur only in amounts of less than 1 ppbv in the clean atmosphere. A comparison of the standard redox potentials of NO and NO2 among other biologically relevant nitrogen species is given in Table 5. A comparison of the atmospheric abundance, life time, and major sources and sinks is given in Table 1. The latter data are compiled from SCOPE reports (Söderlund and Svensson, 1976; Crutzen, 1983). Compared to other atmospheric nitrogen compounds the reactivity of NOx is quite large and thus, relatively large fluxes are required to maintain even small atmospheric mixing ratios. On the other hand, even small variations in fluxes result in large variations in the atmospheric mixing ratios. Since atmospheric NOx plays a key role in the chemistry of the atmosphere, the knowledge of the temporal and spatial distribution of sources and sinks of NOx are extremely important for atmospheric models. The role of soils and of microbial denitrification for NOx exchange between terrestrial ecosystems and the atmosphere is presently very uncertain and thus of special interest.

Keywords

Nitric Oxide Nitrous Oxide Heterotrophic Nitrification Paracoccus Denitrificans Alcaligenes Faecalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, I.C., and Levine, J.S., 1986, Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers, Appl. Environ. Microbiol., 51: 938–945.Google Scholar
  2. Anderson, I.C., and Levine, J.S., 1987, Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide, J. Geophs. Res., 92: 965–976.CrossRefGoogle Scholar
  3. Anderson, I.C., Levine, J.S., Poth, M.A., and Riggan, P.J., 1988, Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning, J. Geophys. Res., 93: 3893–3898.CrossRefGoogle Scholar
  4. Averill, B.A., and Tieje, J.M., 1982, The chemical mechanism of microbial denitrification, FEBS Lett., 138: 8–12.PubMedCrossRefGoogle Scholar
  5. Baumgärtner, M., Remde, A., Bock, E., and Conrad, R., 1990, Release of nitric oxide from building stones into the atmosphere, Atmos. Environ. 24B: 87–92.Google Scholar
  6. Bazylinski, D.A., and Blakemore, R.P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol., 46: 1118–1124.PubMedGoogle Scholar
  7. Betlach, M.R., and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42: 1074–1084.PubMedGoogle Scholar
  8. Blackmer, A.M., Bremner, J.M., and Schmidt, E.L., 1980, Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil, Appl. Environ. Microbiol., 40: 1060–1066.PubMedGoogle Scholar
  9. Blackmer, J.M., and Cerrato, M.E., 1986, Soil properties affecting formation of nitric oxide by chemical reaction of nitrite, Soil Sci. Soc. Am. J., 50: 1215–1218.CrossRefGoogle Scholar
  10. Bremner, J.M., Blackmer, A.M., and Waring, S.A., 1980, Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils, Soil Biol. Biochem., 12: 263–269.CrossRefGoogle Scholar
  11. Bremner, J.M., and Blackmer, A.M., 1980, Mechanisms of nitrous oxide production in soils, in: “Biogeochemistry of ancient and modern environments”, P.A. Trudinger, M.R. Walter and B.J. Ralph, eds., p. 279–291, Springer, Berlin.CrossRefGoogle Scholar
  12. Carlson, C.A., and Ingraham, J.L., 1983, Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans, Appl. Environ. Microbiol., 45: 1247–1253.Google Scholar
  13. Castignetti, D., and Hollocher, T.C., 1984, Heterotrophic nitrification among denitrifiers, Appl. Environ. Microbiol., 47: 620–623.PubMedGoogle Scholar
  14. Chalk, P.M., and Smith, C.J., 1983, Chemodenitrification. Dev. Plant Soil Sci. 9: 65–89.Google Scholar
  15. Cicerone, R.J., 1987, Changes in stratospheric ozone, Science, 237: 3542.CrossRefGoogle Scholar
  16. Colbourn, P., Ryden, J.C., and Dollard, G.J., 1987, Emission of NO from urine-treated pasture, Environ. pollut., 46: 253–261.PubMedCrossRefGoogle Scholar
  17. Cole, J.A., 1988, Assimilatory and dissimilatory reduction of nitrate to ammonia, in: “The nitrogen an sulphur cycles”, J.A. Cole and S. Ferguson, eds., pp. 281–329. Cambridge University Press, Cambridge.Google Scholar
  18. Conrad, R., and Seiler, W., 1980, Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res., 85: 5493–5498.CrossRefGoogle Scholar
  19. Conrad, R., and Seiler, W., 1985, Destruction and production rates of carbon monoxide in arid soils under field conditions, in: “Planetary ecology”, D.E. Caldwell, J.A. Brierley, and C.L. Brierley, eds., p. 112–119. Van Nostrand Reinhold, New York.Google Scholar
  20. Conrad, R., Seiler, W., and Bunse, G., 1983, Factors influencing the loss of fertilizer nitrogen into the atmosphere as N20, J. Geophys. Res., 88: 6709–6718.CrossRefGoogle Scholar
  21. Crutzen, P.J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Ann. Rev. Earth Planet. Sci., 7: 443–472.CrossRefGoogle Scholar
  22. Crutzen, P.J., 1983, Atmospheric interactions–Homogeneous gas reactions of C, N, and S containing compounds, in: “The major biogeochemical cycles and their interactions”, B. Bolin and R.B. Cook, eds., SCOPE 21, p. 67–114. Wiley, Chichester.Google Scholar
  23. Crutzen, P.J., Delany, A.C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem., 2: 233–256.CrossRefGoogle Scholar
  24. Dalton, H., 1977, Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath, Arch. Microbiol., 114: 273–279CrossRefGoogle Scholar
  25. Davidson, E.A., and Swank, W.T., 1986, Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification, Appl. Environ. Microbiol., 52: 1287–1292.PubMedGoogle Scholar
  26. Dean, J.V., and Harper, J.E., 1986, Nitric oxide and nitrous oxide production by Soybean and Winged Bean during the in vivo nitrate reductase assay, Plant Physiol., 82: 718–723.PubMedCrossRefGoogle Scholar
  27. Delany, A.C., Fitzjarrald, D.R., Lenschow, D.H., Pearson Jr., R., Wendel, G.J., and Woodruff, B., 1986, Direct measurements of nitrogen oxides and ozone fluxes over grassland, J. Atmos. Chem., 4: 429–444.CrossRefGoogle Scholar
  28. Duyzer, J.H., Meyer, G.M., and van Aalst, R.M., 1983, Measurement of dry deposition velocities of NO, NO2 and 03 and the influence of chemical reactions, Atmos. Environ., 17: 2117–2120.CrossRefGoogle Scholar
  29. Enhalt, D.M., and Drummond, J.W., 1982, The tropospheric cycle of NON, in: “Chemistry of the unpolluted and polluted troposphere”, H.W. Georgii, and W. Jaeschke, eds., p. 219–251. Reidel, Dordrecht.Google Scholar
  30. Finlayson-Pitts, B.J., and Pitts Jr., J.N., 1986, “Atmospheric chemistry: fundamentals and experimental techniques”, Wiley, New York.Google Scholar
  31. Firestone, M.K., Firestone, R.B., and Tiedje, J.M., 1979, Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange, Biochem. Biophys. Res. Comm., 91: 10–16.CrossRefGoogle Scholar
  32. Firestone, M.K., and Davidson, E.A., 1989, Microbiological basis of NO and N20 production and consumption, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 7–21, Wiley, Chichester.Google Scholar
  33. Focht, D.D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, Adv. Microb. Ecol., 1: 135–214.CrossRefGoogle Scholar
  34. Galbally, I.E., 1989, Factors controlling NOx emission from soils. in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 23–27, Wiley, Chichester.Google Scholar
  35. Galbally, I.E., and Roy, C.R., 1978, Loss of fixed nitrogen from soils by nitric oxide exhalation, Nature, 275: 734–735.CrossRefGoogle Scholar
  36. Galbally, I.E., and Johansson, C., 1989, A model relating laboratory measurements of rates of nitric oxide production and field measurements of nitric oxide emission from soils, J. Geophys. Res., 94: 6473–6480.CrossRefGoogle Scholar
  37. Galbally, I.E., Freney, J.R., Muirhead, W.A., Simpson, J.R., Trevitt, A.C.F., and Chalk, P.M., 1987, Emission of nitrogen oxides (NON) from a flooded soil fertilized with urea: relation to other nitrogen loss processes, J. Atmos. Chem., 5: 343–365.CrossRefGoogle Scholar
  38. Garber, E.A.E., and Hollocher, T.C., 1982, Nitrogen-15, oxygen-18 tracer studies on the activation of nitrite by denitrifying bacteria. Nitrite/water-oxygen exchange and nitrosation reactions as indicators of electrophilic catalysis, J. Biol. Chem., 257: 8091–8097.Google Scholar
  39. Garcia, J.L., 1975, La dénitrification dans les sols, Bull. Inst. Pasteur. 73: 167–193.Google Scholar
  40. Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois, F.W., and Watson, S.W., 1980, Production of NO2- and N20 by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40: 526–532.Google Scholar
  41. Harriss, R.C., 1989, Experimental design for geophysiological research, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen. Wiley, Chichester. (in press)Google Scholar
  42. Heiss, B., Frunzke, K., and Zumft, W.G., 1989, Formation of the N-N bond from nitric oxide by membrane-bound cytochrome be complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri, J. Bacteriol., 171: 3288–3297.PubMedGoogle Scholar
  43. Henry, Y., and Bessieres, P., 1984, Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie 66: 259–289.PubMedCrossRefGoogle Scholar
  44. Hinrichsen, D., 1985, Multiple pollutants and forest decline. Ambio 15: 258–265.Google Scholar
  45. Hochstein, L.I., and Tomlinson, G.A., 1988, The enzymes associated with denitrification, Ann. Rev. Microbiol., 42: 231–262.CrossRefGoogle Scholar
  46. Isaksen, I.S.A., 1988, “Is the oxidizing capacity of the atmosphere changing?” in: “The changing atmosphere”, F.S. Rowland and I.S.A. Isaksen, eds., Dahlem Konferenzen. p. 141–157. Wiley, Chichester.Google Scholar
  47. Ishaque, M., and Aleem, M.I.H., 1973, Intermediates of denitrification in the chemoautotrophic Thiobacillus denitríficans, Arch. Mikrobiol., 94: 269–282.PubMedCrossRefGoogle Scholar
  48. Ji, X.B., and Hollocher, T.C., 1988a, Mechanism for nitrosation of 2,3Diaminonaphtalene by Escherichia coli: Enzymatic production of NO followed by 02-dependent chemical nitrosation, Appl. Environ. Microbiol., 54: 1791–1794.PubMedGoogle Scholar
  49. Ji, X.B., and Hollocher, T.C., 1988b, Reduction of nitrite to nitric oxide by enteric bacteria, Biochem. Bíophys. Res. Comm., 157: 106Google Scholar
  50. Johansson, C., 1984, Field measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden, J. Atmos. Chem., 1: 429–442.CrossRefGoogle Scholar
  51. Johansson, C., 1987, Pine forest: a negligible sink for atmospheric NO, in rural Sweden. Tellus 39B: 426–438.Google Scholar
  52. Johansson, C., 1989, Fluxes of NO, above soil and vegetation, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 229–246, Wiley, Chichester.Google Scholar
  53. Johansson, C., and Galbally, I.E., 1984, Production of nitric oxide in loam under aerobic and anaerobic conditions, Appl. Environ. Microbiol., 47: 1284–1289.PubMedGoogle Scholar
  54. Johansson, C., and Granat, L., 1984, Emission of nitric oxide from arable land. Tellus 36B: 25–37.Google Scholar
  55. Johansson, C., Rhode, H., and Sanhueza, E., 1988, Emission of NO in a tropical savanna and a cloud forest during the dry season, J. Geophys. Res., 93: 7180–7192.CrossRefGoogle Scholar
  56. Kaplan, W.A., Wofsy, S.C., Keller, M., and DaCosta, J.M., 1988, Emission of NO and deposition of 03 in a tropical forest system, J. Geophys. Res., 93: 1389–1395.CrossRefGoogle Scholar
  57. Klemedtsson, L., Svensson, B.H., and Rosswall, T., 1988a, A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil, Biol. Fertil. Soils, 6: 112–119.Google Scholar
  58. Klemedtsson, L., Svensson, B.H., and Rosswall, T., 1988b, Relationship between soil moisture content and nitrous oxide production during nitrification and denitrification, Biol. Fertil. Soils, 6: 106–111.Google Scholar
  59. Klepper, L.A., 1987, Nitric oxide emissions from Soybean leaves during in vivo nitrate reductase assays, Plant Physiol., 85: 96–99.PubMedCrossRefGoogle Scholar
  60. Knowles, R., 1981, Denitrification, in: “Soil biochemistry”, vol.5, E.A. Paul and J.N. Ladd, eds., p. 323–369. Marcel Dekker, New York.Google Scholar
  61. Knowles, R., 1982, Denitrification, Microbiol. Rev., 46: 43–70.PubMedGoogle Scholar
  62. Knowles, R., 1985, Microbial transformations as sources and sinks for nitrous oxides, in: “Planetary ecology”, D.E. Caldwell, J.A. Brierley and C.L. Brierley, eds., p. 411–426. Van Nostrand Reinhold, New York.Google Scholar
  63. Kreitinger, J.P., Klein, T.M., Novick, N.J., and Alexander, M., 1985, Nitrification and characteristics of nitrifying microorganisms in an acid forest soil, Soil Sci. Soc. Am. J., 49: 1407–1410.CrossRefGoogle Scholar
  64. Kuenen, J.G., and Robertson, L.A., 1988, Ecology of nitrification and denitrification, in: “The nitrogen and sulphur cycles”, J.A. Cole and S. Ferguson, eds., p. 162–218. Cambridge University Press, Cambridge.Google Scholar
  65. Lang, E., and Jagnow, G., 1986, Fungi of a forest soil nitrifying at low pH values, FEMS Microbiol. Ecol., 38: 257–265.CrossRefGoogle Scholar
  66. Lipschultz, F., Zafiriou, O.C., Wofsy, S.C., McElroy, M.B., Valois, F.W., and Watson, S.W., 1981, Production of NO and N20 by soil nitrifying bacteria, Nature, 294: 641–643.CrossRefGoogle Scholar
  67. Liu, M.C., Liu, M.Y., Payne, W.J., Peck Jr., H.D., and LeGall, J., 1983, Wolinella succinogenes nitrite reductase: purification and properties, FEMS Microbiol. Lett., 19: 201–206.CrossRefGoogle Scholar
  68. Liu, S.C., Trainer, M., Fehsenfeld, F.C., Parrish, D.D., Williams, E.J., Fahey, D.W., Hübler, G., and Murphy, P.C., 1987, Ozone production in the rural troposphere and the implications for regional and global ozone distribution, J. Geophys. Res., 92: 4191–4207.CrossRefGoogle Scholar
  69. Lloyd, D., Boddy, L., and Davies, K.J.P., 1987, Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception, FEMS Microbiol. Ecol., 45: 185–190.CrossRefGoogle Scholar
  70. Logan, J.A., 1983, Nitrogen oxides in the troposphere: global and regional budgets, J. Geophys. Res., 88: 10785–10807.CrossRefGoogle Scholar
  71. Logan, J.A. 1985. Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res., 90: 10463–10482.CrossRefGoogle Scholar
  72. McKenney, D.J., Shuttleworth, K.F., Vriesacker, J.R., and Findlay, W.I., 1982, Production and loss of nitric oxide from denitrification in anaerobic Brookston clay, Appl. Environ. Microbiol., 43: 534–541.Google Scholar
  73. McKenney, D.J., Johnson, G.P., and Findlay, W.I., 1984, Effect of temperature on consecutive denitrification reactions in Brookston clay and Fox’sandy loam, Appl. Environ. Microbiol., 47: 919–926.PubMedGoogle Scholar
  74. Melillo, J.M., Steudler, P.A., Aber, J.D., and Bowden, R.D., 1989, Atmospheric deposition and nutrient cycling, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere”, M.O. Andreae and D.S. Schimel, eds., Dahlem Konferenzen, p. 263–280, Wiley, Chichester.Google Scholar
  75. Nelson, D.W., 1982, Gaseous losses of nitrogen other than through denitrification, Agronomy, 22: 327–364.Google Scholar
  76. Newman, B.M., and Cole, J.A., 1978, The chromosomal location and pleiotropic effects of mutations of the nirA+ gene of Escherichia coli K12: the essential role of nirA+ in nitrite reduction and other anaerobic reactions, J. Gen. Microbiol., 10: 1–12.Google Scholar
  77. Papen, H., Von Berg, R., Hinkel, I., Thoene, B., and Rennenberg, H., 1989, Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures, Appl. Environ. Microbiol., 55: 2068–2072.PubMedGoogle Scholar
  78. Parkin, T.B., 1987, Soil microsites as a source of denitrification variability, Soil. Sci. Soc. Am. J., 51: 1194–1199.CrossRefGoogle Scholar
  79. Parkin, T.B., Sexstone, A.J., and Tiedje, J.M., 1985, Adaptation of denitrifying populations to low soil pH, Appl. Environ. Microbiol., 49: 1053–1056.Google Scholar
  80. Payne, W.J., 1981, “Denitrification”, Wiley, New York.Google Scholar
  81. Payne, W.J., Grant, M.A., Shapleigh, J., and Hoffman, P., 1982, Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species, J. Bacteriol., 152: 915–918.PubMedGoogle Scholar
  82. Penkett, S.A., 1988, Indications and causes of ozone increase in the troposphere, in: “The changing atmosphere”, F.S. Rowland and I.S.A. Isaksen, eds., Dahlem Konferenzen. p. 91–103. Wiley, Chichester.Google Scholar
  83. Pichinoty, F., Garcia, J.L., Job, C., and Durand, C., 1978, Isolement de bacteries utilisant en anaerobiose l’oxyde nitrique comme acepteur d’electrons respiratoire. C.R., Acad. Sci. Ser. D., 286: 1403–1405.Google Scholar
  84. Poth, M., 1986, Dinitrogen production from nitrite by a Nitrosomonas isolate, Appl. Environ. Microbiol., 52: 957–959.PubMedGoogle Scholar
  85. Poth, M., and Focht, D.D., 1985, 15N kinetic analysis of N20 production by Nirosomonas europaea: an examination of nitrifier denitrification, Appl. Environ. Microbiol., 49: 1134–1141.PubMedGoogle Scholar
  86. Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M., 1987, Climate-chemical interactions and effects of changing atmospheric trace gases, Rev. Geophys., 25: 1441–1482.CrossRefGoogle Scholar
  87. Remde, A., 1989, “Umsetzung von NOx in Böden and Bodenmikroorganismen”, PhD thesis, University of Konstanz, Konstanz, F.R.G.Google Scholar
  88. Remde, A., Slemr, F., and Conrad, R., 1989, Microbial production and uptake of nitric oxide in soil, FEMS Microbiol. Ecol., 62: 221–230.CrossRefGoogle Scholar
  89. Ritchie, G.A.F., and Nicholas, D.J.D., 1972, Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea, Biochem. J., 126: 1181–1191.PubMedGoogle Scholar
  90. Robertson, G.P., 1989, Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention, in: “Mineral nutrients in tropical forest and savanna ecosystems”, J. Procter, ed., Blackwell Scientific, Oxford.Google Scholar
  91. Robertson, G.P., and Tiedje, J.M., 1987, Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes, Soil Biol. Biochem., 19: 187–193.CrossRefGoogle Scholar
  92. Robertson, L.A., and Kuenen, J.G., 1984, Aerobic denitrification: a controversy revived, Arch. Microbiol., 139: 351–354.CrossRefGoogle Scholar
  93. Robertson, L.A., and Kuenen, J.G., 1986, Heterotrophic nitrification in Thiosphaera pantotropha: oxygen uptake and enzyme studies, J. Gen. Microbiol., 134: 857–863.Google Scholar
  94. Robertson, L.A., Van Niel, E.W.J., Torremans, R.A.M., and Kuenen, J.G., 1988, Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera panthotropha, Appl. Environ. Microbiol.. 54: 2812–2818.Google Scholar
  95. Ryden, J.C., 1981, N20 exchange between a grassland soil and the atmosphere. Nature 292: 235–237.CrossRefGoogle Scholar
  96. Schmidt, E.L., 1982. Nitrification in soil. Agronomy 22: 253–288.Google Scholar
  97. Schröder, I., Robertson, A.M., Bokranz, M., Unden, G., Bocher, R., and Kröger, A., 1985, The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes, Arch. Microbiol., 140: 380–386.CrossRefGoogle Scholar
  98. Seiler, W., and Conrad, R., 1981, Field measurements of natural and fertilizer induced N20 release rates from soils, J. Air Poll. Contr. Assoc., 31: 767–772.CrossRefGoogle Scholar
  99. Shapleigh, J.P., and Payne, W.J., 1985, Nitric oxide-dependent proton translocation in various denitrifiers, J. Bacteriol., 163: 837–840.PubMedGoogle Scholar
  100. Singh, H.B., 1987, Reactive nitrogen in the troposphere, Environ. Sci. Technol., 21: 320–327.PubMedCrossRefGoogle Scholar
  101. Slemr, F., and Seiler, W., 1984, Field measurements of NO and NO2 emissions from fertilized and unfertilized soils, J. Atmos. Chem., 2: 1–24.CrossRefGoogle Scholar
  102. Slemr, F., Conrad, R., and Seiler, W., 1984, Nitrous oxide emissions from fertilized and unfertilized soils in a subtropical region (Andalusia, Spain ), J. Atmos. Chem., 1: 159–169.CrossRefGoogle Scholar
  103. Smith, M.S., 1983, Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity, Appl. Environ. Microbiol., 45: 1545–1547.PubMedGoogle Scholar
  104. Söderlund, R., and Svensson, B.H., 1976, The global nitrogen cycle, in: “Nitrogen, phosphorus and sulphur-global cycles”, B.H. Svensson and R. Söderlund, eds., SCOPE 7, p. 23–73. Stockholm.Google Scholar
  105. Stedman, D.M., and Shetter, R.E., 1983, The global budget of atmospheric nitrogen species, in: “Trace atmospheric constituents”, S.E. Schwartz, ed., p. 411–454. Wiley, New York.Google Scholar
  106. Teraguchi, S., and Hollocher, T.C., 1989, Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes, J. Biol. Chem., 264: 1972–1979.PubMedGoogle Scholar
  107. Thauer, R.K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bact. Rev., 41: 100–180.PubMedGoogle Scholar
  108. Tiedje, J.M., 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonia, in: “Biology of anaerobic microorganisms”, A.J.B. Zehnder, ed., p. 179–244. Wiley, New York.Google Scholar
  109. Van Cleemput, O., and Baert, L., 1976, Theoretical considerations on nitrite self-decomposition reactions in soils, Soil Sci. Soc. Am. J., 40: 322–324.Google Scholar
  110. Van Cleemput, O., and Baert, L., 1984, Nitrite: a key compound in N loss processes under acid conditions, Plant Soil, 76: 233–241.CrossRefGoogle Scholar
  111. Vedenina, I.Y., and Zavarzin, G.A., 1977, Biological removal of nitrous oxide under oxidizing conditions, Mikrobiologiya, 46: 898–903.Google Scholar
  112. Vedenina, I.Y., Miller, Y.M., Kapustin, 0.A, and Zavarzin, G.A., 1980, Oxidation of nitrous oxide during decomposition of hydrogenperoxide by catalase, Mikrobiologiya, 49: 5–8.Google Scholar
  113. Warneck, P., 1988, “Chemistry of the natural atmosphere”, Academic Press, London.Google Scholar
  114. Wesely, M.L., Eastman, J.A., Stedman, D.H., and Yalvac, E.D., 1982, An eddy-correlation measurement of NO2 flux to vegetation and comparison to 03 flux, Atmos. Environ., 16: 815–820.Google Scholar
  115. Williams, E.J., Parrish, D.D., and Fehsenfeld, F.C., 1987, Determination of nitrogen oxide emissions from soils: results from a grassland site in Colorado, United States, J. Geophys. Res. 92: 2173–2179.CrossRefGoogle Scholar
  116. Williams, E.J., Parrish, D.D., Buhr, M.P., Fehsenfeld, F.C., and Fall, R., 1988, Measurement of soil NO emissions in central Pennsylvania, J. Geophys. Res., 93: 9539–9546.CrossRefGoogle Scholar
  117. Yoshinari, T., 1980, N20 reduction by Vibrio succinogenes, Appl. Environ. Microbiol., 39: 81–84.Google Scholar
  118. Yoshinari, T., 1985, Nitrite and nitrous oxide production by Methylosinus trichosporium, Can. J. Microbiol., 31: 139–144.CrossRefGoogle Scholar
  119. Zafiriou, O.C., Hanley, Q.S., and Snyder, G., 1989, Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina, J. Biol. Chem., 264: 5694–5699.PubMedGoogle Scholar
  120. Zumft, W.G., Döhler, K., Körner, H., Löchelt, S., Viebrock, A., and Frunzke, K., 1988, Defects in cytochrome cdl-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri, Arch. Microbiol., 149: 492–498.PubMedCrossRefGoogle Scholar
  121. Zumft, W.G., Viebrock, A., and Körner, H., 1988. Biochemical and physiological aspects of denitrification, in: “The nitrogen and sulphur cycles”, J.A. Cole and S. Ferguson, eds., p. 245–279. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ralf Conrad
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations