Advertisement

Metabolism of Nitrous Oxide

  • Walter G. Zumft
  • Peter M. H. Kroneck
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 56)

Abstract

Nitrous oxide (N2O) is a firmly established inorganic metabolite of denitrification. It is either the end product of the process or the obligatory intermediate antecedent to N2. Ample evidence for its role comes from physiological, biochemical, and genetic work as well as from isotope studies. Involvement of N2O in denitrification is now documented to such an extent, that the existence of a copper and/or iron-containing metalloflavoprotein (EC 1.7.99.2), described to form N2 from NO (Chung and Najjar, 1956; Fewson and Nicholas, 1961), must be questioned. N2O is also a product of denitrification by nitrifiers and of NO 3 and NO 2 metabolism of non-denitrifying microorganisms.

Keywords

Nitric Oxide Nitric Oxide Electron Paramagnetic Resonance Nitrous Oxide Electron Paramagnetic Resonance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

literature Cited

  1. Adkins, A. M., and R. Knowles. 1986. Denitrification by Cytophaga johnsonae strains and by a gliding bacterium able to reduce nitrous oxide in the presence of acetylene and sulfide. Can. J. Microbiol. 32: 421–424.CrossRefGoogle Scholar
  2. Alefounder, P. R., A. J. Greenfield, J. E. G. McCarthy, and S. J. Ferguson. 1983. Selection and organisation of denitrifying electrontransfer pathways in Paracoccus denitrificans. Biochim. Biophys. Acta 724: 20–39.CrossRefGoogle Scholar
  3. Ames, G. F.-L. 1986. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu. Rev. Biochem. 55: 397–425.PubMedCrossRefGoogle Scholar
  4. Baalsrud, K., and K. S. Baalsrud. 1954. Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20: 34–62.PubMedCrossRefGoogle Scholar
  5. Bazylinski, D. A., and R. P. Blakemore. 1983. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 46: 1118–1124.PubMedGoogle Scholar
  6. Bazylinski, D. A., R. B. Frankel, and H. W. Jannasch. 1988. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature (London) 334: 518–519.CrossRefGoogle Scholar
  7. Bazylinski, D. A., E. Palome, N. A. Blakemore, and R. P. Blakemore. 1986a. Denitrification by Chromobacterium violaceum. Appl. Environ. Microbiol. 52: 696–699.PubMedGoogle Scholar
  8. Bazylinski, D. A., C. K. Soohoo, and T. C. Hollocher. 1986b. Growth of Pseudomonas aeruginosa on nitrous oxide. Appl. Environ. Microbiol. 51: 12391246.Google Scholar
  9. Beijerinck, M. W., and D. C. J. Minkman. 1910. Bildung und Verbrauch von Stickoxydul durch Bakterien. Zentralbl. Bakteriol. Abt. 2, 25: 30–63.Google Scholar
  10. Bonin, P., M. Gilewicz, and J. C. Bertrand. 1987. Denitrification by a marine bacterium Pseudomonas nautica strain 617. Ann. Inst. Pasteur/Microbiol., 138: 371–383.CrossRefGoogle Scholar
  11. Boogerd, F. C., H. W. van Versefeld, and A. H. Stouthamer. 1981. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. Biochim. Biophys. Acta 638: 181–191.PubMedCrossRefGoogle Scholar
  12. Broda, E. 1975. The evolution of the bioenergetic processes. Pergamon Press, Oxford.Google Scholar
  13. Burkhardt, R., and V. Braun. 1987. Nucleotide sequence of the fhuC and fhuD genes involved in iron(II) hydroxamate transport: domains in FhuC homologous to ATP-binding proteins. Mol. Gen. Genet. 209: 49–55.PubMedCrossRefGoogle Scholar
  14. Carlson, C. A., and J. L. Ingraham. 1983. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 45: 1247–1253.Google Scholar
  15. Carr, G., and S. J. Ferguson. 1988. Nitric oxide reductase of Paracoccus denitrificans. Biochem. Soc. Trans. 16: 187–188.Google Scholar
  16. Carr, G. J., M. D. Page, and S. J. Ferguson. 1989. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur. J. Biochem. 179: 683–692.PubMedCrossRefGoogle Scholar
  17. Chung, C. W., and V. A. Najjar. 1956. Cofactor requirements for enzymatic de nitrification. II. Nitric oxide reductase J. Biol. Chem. 218: 627–632.PubMedGoogle Scholar
  18. Cox, C. D., Jr., and W. J. Payne. 1973. Separation of soluble denitrifying enzymes and cytochromes from Pseudomonas perfectomarinus. Can. J. Microbiol. 19: 861–872.PubMedCrossRefGoogle Scholar
  19. Cox, C. D., Jr., W. J. Payne, and D. V. DerVartanian. 1971. Electron paramagnetic resonance studies on the nature of hemoproteins in nitrite and nitric oxide reduction. Biochim. Biophys. Acta 253: 290–294.PubMedCrossRefGoogle Scholar
  20. Coyle, C. L., W. G. Zumft, P. M. H. Kroneck, H. Körner, and W. Jakob. 1985. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153: 459–467.PubMedCrossRefGoogle Scholar
  21. Daniel, R. M., A. W. Limmer, K. W. Steele, and I. M. Smith. 1982. Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains. J. Gen. Microbiol. 128: 1811–1815.Google Scholar
  22. Dhesi, R., and R. Timkovich. 1984. Patterns of inhibition for bacterial nitrite reductase. Biochem. Biophys. Res. Commun. 123: 966–972.PubMedCrossRefGoogle Scholar
  23. Dooley, D. M., R. S. Moog, and W. G. Zumft. 1987. Characterization of the copper sites in Pseudomonas perfectomarina nitrous oxide reductase by resonance Raman spectroscopy. J. Am. Chem. Soc. 109: 6730–6735.CrossRefGoogle Scholar
  24. Ferguson, S. J. 1988. The redox reactions of the nitrogen and sulphur cycles, p. 1–29. In J. A. Cole, and S. J. Ferguson (ed.) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge.Google Scholar
  25. Fewson, C. A., and J. D. Nicholas. 1961. Nitric oxide reductase from Pseudomonas aeruginosa. Biochem. J. 78: 9–10 p.Google Scholar
  26. Firestone, M. K., R. B. Firestone, and J. M. Tiedje. 1979. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem. Biophys. Res. Commun. 91: 10–16.PubMedCrossRefGoogle Scholar
  27. Freitag, A., M. Rudert, and E. Bock. 1987. Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol. Lett. 48: 105–109.Google Scholar
  28. Friedrich, M. J., L. C. DeVeaux, and R. J. Kadner. 1986. Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmic-binding protein-dependent transport systems. J. Bacteriol. 167: 928–934.PubMedGoogle Scholar
  29. Frunzke, K., and W. G. Zumft. 1986. Inhibition of nitrous-oxide respiration by nitric oxide in the denitrifying bacterium Pseudomonas perfectomarina. Biochim. Biophys. Acta 852: 119–125.CrossRefGoogle Scholar
  30. Gamble, T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33: 926–939.PubMedGoogle Scholar
  31. Garber, E. A. E., D. Castignetti, and T. C. Hollocher. 1982. Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifying Paracoccus denitrificans. Biochem. Biophys. Res. Commun. 107: 1504–1507.PubMedCrossRefGoogle Scholar
  32. Garcia, J.-L., F. Pichinoty, M. Mandel, and B. Greenway. 1977. A new denitrifying saprophyte related to Pseudomonas pickettii. Ann. Microbiol. (Inst. Pasteur) 128A: 229–237.Google Scholar
  33. Grant, M. A., S. E. Cronin, and L. I. Hochstein. 1984. Solubilization and resolution of the membrane-bound nitrite reductase from Paracoccus halodenitrificans into nitrite and nitric oxide reductases. Arch. Microbiol. 140: 183–186.CrossRefGoogle Scholar
  34. Greenberg, E. P., and G. E. Becker. 1977. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads. Can. J. Microbiol. 23: 903–907.PubMedCrossRefGoogle Scholar
  35. Hart, L. T., A. D. Larson, and C. S. McCleskey. 1965. Denitrification by Corynebacterium nephridii. J. Bacteriol. 89: 1104–1108.PubMedGoogle Scholar
  36. Heiss, B., K. Frunzke, and W. G. Zumft. 1989. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome be complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J. Bacteriol. 171: 3288–3297.PubMedGoogle Scholar
  37. Higgins, C. F., I. D. Hiles, G. P. C. Salmond, D. R. Gill, J. A. Downie, I. J. Evans, I. B. Holland, L. Gray, S. D. Buckels, A. W. Bell, and M. A. Hermodson. 1986. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature (London) 323: 448–450.CrossRefGoogle Scholar
  38. Higgins, C. F., M. P. Gallagher, M. L. Mimmack, and S. R. Pearce. 1988. A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells. BioEssays 8: 111–116.PubMedCrossRefGoogle Scholar
  39. Hochstein, L. I., and G. A. Tomlinson. 1988. The enzymes associated with denitrification. Annu. Rev. Microbiol. 42: 231–261.PubMedCrossRefGoogle Scholar
  40. Hoglen, J., and T. C. Hollocher. 1986. Purification of nitric oxide reductase from Paracoccus denitrificans. Fed. Proc. 45: 1604.Google Scholar
  41. Hollocher, T. C. 1982. The pathway of nitrogen and reductive enzymes of denitrification. Antonie van Leeuwenhoek J. Microbiol. Serol. 48: 531–544.Google Scholar
  42. Hynes, R. K., A.-L. Ding, and L. M. Nelson. 1985. Denitrification by Rhizobium fredii. FEMS Microbiol. Lett. 30: 183–186.Google Scholar
  43. Itoh, M., S. Mizukami, K. Matsuura, and T. Satoh. 1989. Involvement of cytochrome bc1 complex and cytochrome c2 in the electron-transfer pathway for NO reduction in a photodenitrifier, Rhodobacter sphaeroides f. s. denitrificans. FEBS Lett. 244: 81–84.CrossRefGoogle Scholar
  44. Iwasaki, H., T. Saigo, and T. Matsubara. 1980. Copper as a controlling factor of anaerobic growth under N2O and biosynthesis of N2O reductase in denitrifying bacteria. Plant Cell Physiol. 21: 1573–1584.Google Scholar
  45. Iwasaki, H., and H. Terai. 1982. Analysis of N2 and N2O produced during growth of denitrifying bacteria in copper-depleted and -supplemented media. J. Gen. Appl. Microbiol. 28: 189–93.CrossRefGoogle Scholar
  46. Jensen, B. B., and R. H. Burris. 1986. N2O as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry 25: 1083–1088.PubMedCrossRefGoogle Scholar
  47. Jin, H., H. Thomann, C. L. Coyle, and W. G. Zumft. 1989. Copper coordination in nitrous oxide reductase from Pseudomonas stutzeri. J. Am. Chem. Soc. 111: 4262–4269.CrossRefGoogle Scholar
  48. Kaplan, W. A., and S. C. Wofsy. 1985. The biogeochemistry of nitrous oxide: a review. Adv. Aquat. Microbiol. 3: 181–206.Google Scholar
  49. Koike, I., and A. Hattori. 1975. Energy yield of denitrification: an estimate from growth yield in continuous culture of Pseudomonas denitrificans under nitrate-, nitrite-, and nitrous oxide-limited conditions. J. Gen. Microbiol. 88: 11–19.PubMedCrossRefGoogle Scholar
  50. Körner, H., K. Frunzke, K. Döhler, and W. G. Zumft. 1987. Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd1) among denitrifying pseudomonads. Arch. Microbiol. 148: 20–24.PubMedCrossRefGoogle Scholar
  51. Körner, H., and W. G. Zumft. 1989. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol. 55: 1670–1676.PubMedGoogle Scholar
  52. Krieg, N. R. 1976. Biology of the chemoheterotrophic spirilla. Bacteriol. Rev. 40: 55–115.PubMedGoogle Scholar
  53. Kroneck, P. M. H., W. A. Antholine, J. Riester, and W. G. Zumft. 1988. The cupric site in nitrous oxide reductase contains a mixed-valence (Cu(II),Cu(I)) binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett. 242: 70–74.PubMedCrossRefGoogle Scholar
  54. Kroneck, P. M. H., W. A. Antholine, J. Riester, and W. G. Zumft. 1989. The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase. FEBS Lett. 248: 212–213.PubMedCrossRefGoogle Scholar
  55. Lee, H. S., R. E. W. Hancock, and J. L. Ingraham. 1989. Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N2O reductase. J. Bacteriol. 171: 2096–2100.PubMedGoogle Scholar
  56. Li, P. M., J. Gelles, S. I. Chan, R. J. Sullivan, and R. A. Scott. 1987. Extended X-ray absorption fine structure of copper in CuA-depleted, p-(hydroxymercuri)benzoate-modified, and native cytochrome c oxidase. Biochemistry 26: 2091–2095.PubMedCrossRefGoogle Scholar
  57. Malkin, R., and B. G. Malmström. 1970. The state and function of copper in biological systems. Adv. Enzymol. 33: 177–244.PubMedGoogle Scholar
  58. Mancinelli, R. L., S. Cronin, and L. I. Hochstein. 1986. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans. Arch. Microbiol. 145: 202–208.PubMedCrossRefGoogle Scholar
  59. Matsubara, T. 1971. Studies on denitrification. XIII. Some properties of the N2O-anaerobically grown cell. J. Biochem. 69: 991–1001.PubMedGoogle Scholar
  60. Matsubara, T., K. Frunzke, and W. G. Zumft. 1982. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J. Bacteriol. 149: 816–823.PubMedGoogle Scholar
  61. Matsubara, T., and H. Iwasaki. 1971. Enzymatic steps of dissimilatory nitrite reduction in Alcaligenes faecalis. J. Biochem. 69: 859–868.PubMedGoogle Scholar
  62. Matsubara, T., and H. Iwasaki. 1972. Nitric oxide-reducing activity of Alcaligenes faecalis cytochrome cd. J. Biochem. 72: 57–64.PubMedGoogle Scholar
  63. Matsubara, T., and M. Sano. 1985. Isolation and some properties of a novel violet copper protein from a denitrifying bacterium, Alcaligenes sp. Chem. Lett. 1053–1056.Google Scholar
  64. Matsubara, T., and W. G. Zumft 1982. Identification of a copper protein as part of the nitrous oxide-reducing system in nitrite-respiring (denitrifying) pseudomonads. Arch. Microbiol. 132: 322–328.CrossRefGoogle Scholar
  65. McEwan, A. G., A. J. Greenfield, H. G. Wetzstein, J. B. Jackson, and S. J. Ferguson. 1985. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J. Bacteriol. 164: 823–830.PubMedGoogle Scholar
  66. Michalski, W. P., D. H. Hein, and D. J. D. Nicholas. 1986. Purification and characterization of nitrous oxide reductase from Rhodopseudomonas sphaeroides f.sp. denitrificans. Biochim. Biophys. Acta 872: 50–60.CrossRefGoogle Scholar
  67. Minagawa, N., and W. G. Zumft. 1988. Cadmium-copper antagonism in the activation of periplasmic nitrous oxide reductase of copper-deficient cells from Pseudomonas stutzeri. Biol. Metals 1: 117–122.CrossRefGoogle Scholar
  68. Miyata, M., T. Matsubara, and T. Mori. 1969. Studies on denitrification. XI. Some properties of nitric oxide reductase. J. Biochem. 66: 759–765.PubMedGoogle Scholar
  69. Mokhele, K., Y. J. Tang, M. A. Clark, and J. L. Ingraham. 1987. A Pseudomonas stutzeri outer membrane protein inserts copper into N2O reductase. J. Bacteriol. 169: 5721–5726.PubMedGoogle Scholar
  70. Payne, W. J., M. A. Grant, J. Shapleigh, and P. Hoffman. 1982. Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species. J. Bacteriol. 152: 915–918.PubMedGoogle Scholar
  71. Pichinoty, F., J. Bigliardi-Rouvier, M. Mandel, B. Greenway, G. Méténier, and J.-L. Garcia. 1976. The isolation and properties of a denitrifying bacterium of the genus Flavobacterium. Antonie van Leeuwenhoek J. Microbiol. Serol. 42: 349–354.Google Scholar
  72. Pichinoty, F., M. Mandel, and J.-L. Garcia. 1977a. Étude de six souches de Agrobacterium tumefaciens et A. radiobacter. A.n. Microbiol. (Inst. Pasteur) 128A: 303–310.Google Scholar
  73. Pichinoty, F., M. Mandel, and J.-L. Garcia. 1979. The properties of novel mesophilic denitrifying Bacillus cultures found in tropical soils. J. Gen. Microbiol. 115: 419–430.CrossRefGoogle Scholar
  74. Pichinoty, F., M. Mandel, B. Greenway, and J.-L. Garcia. 1977b. Étude de 14 bactéries dénitrifiantes appartenant au groupe Pseudomonas stutzeri isolées du sol par culture d’enrichissement en présence d’oxyde nitreux. Ann. Microbiol. (Inst. Pasteur) 128A: 75–87.Google Scholar
  75. Poth, M. 1986. Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl. Environ. Microbiol. 52: 957–959.PubMedGoogle Scholar
  76. Poth, M., and D. D. Focht. 1985. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl. Environ. Microbiol. 49: 1134–1141.PubMedGoogle Scholar
  77. Riester, J., W. G. Zumft, and P. M. H. Kroneck. 1989. Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur. J. Biochem. 178: 751–762.PubMedCrossRefGoogle Scholar
  78. Robertson, L. A., and J. G. Kuenen. 1983. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J. Gen. Microbiol. 129: 2847–2855.Google Scholar
  79. Römermann, D., and B. Friedrich. 1985. Denitrification by Alcaligenes eutrophus is plasmid dependent. J. Bacteriol. 162: 852–854.PubMedGoogle Scholar
  80. Scott, R. A., W. G. Zumft, C. L. Coyle, and D. M. Dooley. 1989. Pseudomonas stutzeri N2O reductase contains Cu-type sites. Proc. Natl. Acad. Sci. USA 86: 4082–4086.PubMedCrossRefGoogle Scholar
  81. Shapleigh, J. P., K. J. P. Davies, and W. J. Payne. 1987. Detergent inhibition of nitric-oxide reductase activity. Biochim. Biophys. Acta 911: 334–340.Google Scholar
  82. Shapleigh, J. P., and W. J. Payne. 1985. Nitric oxide-dependent proton translocation in various denitrifiers. J. Bacteriol. 163: 837–840.PubMedGoogle Scholar
  83. Snyder, S. W., D. A. Bazylinski, and T. C. Hollocher. 1987. Loss of N2O reductase activity as an explanation for poor growth of Pseudomonas aeruginosa on N2O. Appl. Environ. Microbiol. 53: 2045–2049.PubMedGoogle Scholar
  84. Snyder, S. W., and T. C. Hollocher. 1984. Nitrous oxide reductase and the 120,000 MW copper protein of N2-producing denitrifying bacteria are different entities. Biochem. Biophys. Res. Commun. 119: 588–592.PubMedCrossRefGoogle Scholar
  85. Snyder, S. W., and T. C. Hollocher. 1987. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J. Biol. Chem. 262: 6515–6525.PubMedGoogle Scholar
  86. Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudo-monads: a taxonomic study. J. Gen. Microbiol. 43: 159–271.PubMedCrossRefGoogle Scholar
  87. Stouthamer, A. H. 1988a. Dissimilatory reduction of oxidized nitrogen compounds, p. 245–303. In A. J. B. Zehnder (ed.) Biology of anaerobic microorganisms. John Wiley & Sons, Inc., New York.Google Scholar
  88. Stouthamer, A. H. 1988b. Bioenergetics and yields with electron acceptors other than oxygen, p. 345–437. In L. E. Erickson and D. Y.-C. Fung (ed.) Handbook on anaerobic fermentations. Marcel Dekker, Inc., New York.Google Scholar
  89. Teraguchi, S., and T. C. Hollocher. 1989. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes. J. Biol. Chem. 264: 1972–1979.PubMedGoogle Scholar
  90. Tibelius, K. H., and R. Knowles. 1984. Uptake hydrogenase activity in denitrifying Azospirillum brasilense grown anaerobically with nitrous oxide or nitrate. J. Bacteriol. 157: 84–88.PubMedGoogle Scholar
  91. Tiedje, J. M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium, p. 179–244. In A. J. B. Zehnder (ed.), Biology of anaerobic microorganisms. John Wiley & Sons, Inc. New York.Google Scholar
  92. Urata, K., and T. Satoh. 1985. Mechanism of nitrite reduction to nitrous oxide in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Biochim. Biophys. Acta 841: 201–207.CrossRefGoogle Scholar
  93. Urata, K., K. Shimada, and T. Satoh. 1982. Periplasmic location of nitrous oxide reductase in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol. 23: 1121–1124.Google Scholar
  94. Vaughn, S., and B. K. Burgess. 1989. Nitrite: a new substrate for nitrogenase. Biochemistry 28: 419–424.PubMedCrossRefGoogle Scholar
  95. Viebrock, A., and W. G. Zumft. 1987. Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. J. Bacteriol. 169: 4577–4580.PubMedGoogle Scholar
  96. Viebrock, A., and W. G. Zumft. 1988. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J. Bacteriol. 170: 4658–4668.PubMedGoogle Scholar
  97. Weeg-Aerssens, E., J. M. Tiedje, and B. A. Averill. 1988. Evidence from isotope labeling studies for a sequential mechanism for dissimilatory nitrite reduction. J. Am. Chem. Soc. 110: 6851–6856.CrossRefGoogle Scholar
  98. Wijler, J., and C. C. Delwiche. 1954. Investigation on the denitrifying process in soil. Plant Soil 5: 155–169.CrossRefGoogle Scholar
  99. Wood, A. P., and D. P. Kelly. 1983. Autotrophic, mixotrophic and heterotrphic growth with denitrification by Thiobacillus A2 under anaerobic conditions. FEMS Microbiol. Lett. 16: 363–370.Google Scholar
  100. Yoshimura, T., H. Iwasaki, S. Shidara, S. Suzuki, A. Nakahara, and T. Matsubara. 1988. Nitric oxide complex of cytochrome c’ in cells of denitrifying bacteria. J. Biochem. 103: 1016–1019.PubMedGoogle Scholar
  101. Yoshinari, T. 1980. N20 reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39: 81–84.PubMedGoogle Scholar
  102. Zumft, W. G., C. L. Coyle, and K. Frunzke. 1985a. The effect of oxygen on chromatographic behavior and properties of nitrous oxide reductase. FEBS Lett. 183: 240–244.CrossRefGoogle Scholar
  103. Zumft, W. G., K. Döhler, and H. Körner. 1985b. Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. J. Bacteriol. 163: 918–924.PubMedGoogle Scholar
  104. Zumft, W. G., K. Döhler, H. Körner, S. Löchelt, A. Viebrock, and K. Frunzke. 1988a. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch. Microbiol. 149: 492–498.PubMedCrossRefGoogle Scholar
  105. Zumft, W. G., and K. Frunzke. 1982. Discrimination of ascorbate-dependent non-enzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. Biochim. Biophys. Acta 681: 459–468.PubMedCrossRefGoogle Scholar
  106. Zumft W. G., and T. Matsubara. 1982. A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett. 148: 107–112.CrossRefGoogle Scholar
  107. Zumft, W. G., and J. M. Vega. 1979. Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus. Biochim. Biophys. Acta 548: 484–499.PubMedCrossRefGoogle Scholar
  108. Zumft, W. G., A. Viebrock, and H. Körner. 1988b. Biochemical and physiological aspects of denitrification, p. 245–279. In J. A. Cole, and S. J. Ferguson (ed.) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Walter G. Zumft
    • 1
  • Peter M. H. Kroneck
    • 2
  1. 1.Lehrstuhl für Mikrobiologie der UniversitätKarlsruhe 1Germany
  2. 2.Fakultät für Biologie der UniversitätKonstanz 1Federal Republic of Germany

Personalised recommendations