Advertisement

Dendritic Cell Based Therapy of Cancer

  • Michael T. Lotze
  • Michael Shurin
  • Ian Davis
  • Andrew Amoscato
  • Walter J. Storkus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

The recent identification of techniques both in the mouse and in man to culture dendritic cells which could be adoptively trasnferred for therapy have opened new avenues of research. We have applied both synthetic and natural or acid eluted peptides from the tumor cell surface in order to elicit effective antitumor responses in vivo and in vitro in murine tumor models as well as in vivo in human preclinical trials. Based on these studies, we will soon initiate a human clinical trial utilizing human dendritic cells pulsed with synthetic melanoma derived peptides presented by HLA-A2. The delivery of genes into human dendritic cells to constitutively express cytokines, costimulatory molecules or tumor antigens represents another potential approach to the development of dendritic cell based therapies.

Keywords

Dendritic Cell Peptide Vaccine FLT3 Ligand Tumor Peptide Control Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robbins PF, El-Gamil M, Kawakami, Y, Rosenberg SA. Recognition of tyrosinase by tumor - infiltrating lymphocytes from a patient responding to immunotherapy. 1994; Cancer Res 54:3124–3126.PubMedGoogle Scholar
  2. 2.
    Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakkaguchi K, Appella E, Yanelli JR, Adema GJ, Kimi T, Rosenberg SA. Identification of melanoma antigens recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. 1994; Proc Natl Acad Sci 91: 6458–6462.PubMedCrossRefGoogle Scholar
  3. 3.
    Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van Den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. 1991; Science 254: 1643–1047.PubMedCrossRefGoogle Scholar
  4. 4.
    Traversari C, van der Bruggen P, Luescher IF, et al.: A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-Al by cytolytic T–lymphocytes directed against tumour antigen MZ2-E. J Exp Med 1992: 176: 1453–1458PubMedCrossRefGoogle Scholar
  5. 5.
    Van der Bruggen P, Szikora J-P, Boel, P, Wildmann C, Somville, M, Sensi M, Boon T. Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw*16018. 1994. Eur J Immunol 24: 2134–2140.PubMedCrossRefGoogle Scholar
  6. 6.
    Zakut R, Topalian SL, Kawakami Y, Mancini M, Eliyahu S, Rosenberg SA. Differential expression of MAGE-1, -2, -3 messenger RNA in transformed and normal cell lines. 1993; Cancer Res 53: 54–47.Google Scholar
  7. 7.
    Shamamian P, Mancini M, Kawakami Y, et al.: Recognition of neuroectodermal tumors by melanoma -specific cytotoxic T lymphocytes: evidence for antigen sharing by tumors derived from the neural crest. Cancer Immunol Immunother 1994; 39: 73–79PubMedCrossRefGoogle Scholar
  8. 8.
    Gaugler B, Van den Eynde B, van der Bruggen P. Romerao P, Gaforio J J, De Plaen E, Lethe B, Brasseur F, Boon T. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. 1994; J Exp Med 179: 921–930.Google Scholar
  9. 9.
    Van der Bruggen P, Bastin J, Gajewski T, Coulie PG, Boel P. De Smet C, Traversari C, Townsend A, Boon T. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. 1994. Eur J Immunol 24: 3038–3043.PubMedCrossRefGoogle Scholar
  10. 10.
    Boel-P; Wildmann-C; Sensi-ML; Brasseur-R; Renauld-JC; Coulie-P; Boon-T; van-der-Bruggen-P BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. 1995. Immunity. 2: 167–75Google Scholar
  11. 11.
    Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by cytolytic T lymphocytes on a human melanoma. J Exp Med 182: 689–698, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen, E. Lethe B, Coulie P, Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA- A2 melanomas. 1993; J Exp Med 178: 489–495.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolfel T. Van Pel, A, Brichard V, Schneider J, Seliger B, Meyer zum Buschenfelde K-H, Boon T. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. 1994; Eur J Immunol 24: 759–764.Google Scholar
  14. 14.
    Wang R-F, Robbins PF, Kawakami Y, Kang X-Q, Rosenberg SA. Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31–restricted tumor–infiltrating lymphocytes. 1995; J Exp Med 181: 799–804.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang R-F, Robbins PF, Kawakami Y, Rosenberg SA. A novel human cancer antigen resulting from translation of an alternative open reading frame of TRP-I. Science, in press.Google Scholar
  16. 16.
    Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA. Cloning of the gene coding fora shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. 1994; Proc Natl Acad Sci 91: 3515–3519.PubMedCrossRefGoogle Scholar
  17. 17.
    Coulie PG, Brichard V, VanPel A, Wolfel T, Schneider J, Traversari C, Mattei S, De Plaen E, Lurquin C, Szikora J-P, Renauld J-C, Boon T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. 1994; J Exp Med 180: 35–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Castelli C, Storkus WJ, Maeurer MJ, Martin DM, Huang EC, Pramanik BN, Nagabhushan TL, Parmiani G, Lotze MT. Mass spectrometric identification of a naturally–processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. 1995; J Exp Med 181: 363–368.PubMedCrossRefGoogle Scholar
  19. 19.
    Bakker ABH, Schreurs MWJ, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG. Melanocyte lineage–specific antigen gp100 is recognized by melanoma derived tumor infiltrating lymphocytes. 1994; J Exp Med 179: 1005–1009.PubMedCrossRefGoogle Scholar
  20. 20.
    Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL. Identification of a peptide recognized by five melanoma–specific human cytotoxic T cell lines. 1994; Science 264: 716–719.PubMedCrossRefGoogle Scholar
  21. 21.
    Anichini A, Maccalli C, Mortarini R, Salvi S, Mazzocchi A, Squarcina P, Herlyn M, Parmiani G. Melanoma cells and normal melanocytes share antigens recognized by HLA-A2 restricted cytotoxic T cell clones from melanoma patients. 1993. J Exp Med 177: 265–272.CrossRefGoogle Scholar
  22. 22.
    Egner W, McKenzie JL, Smith SM, Beard ME, Hart DN. Identification of potent mixed leukocyte reaction-stimulatory cells in human bone marrow. Putative differentiation stage of human blood dendritic cells. Journal of Immunology 1993; 150: 3043–3053.Google Scholar
  23. 23.
    Inaba K., Witmer-Pack M., Inaba M. et al. The tissue distribution of B7–2 costimulator in mice:abundant expression of dendritic cells in situ and during maturation in vitro. J. Exp. Med. 180: 1849–1860, 1994.PubMedCrossRefGoogle Scholar
  24. 24.
    Kämpgen, Koch F, Heufler C, Eggert A, Gill LL, Gillis S, Dower SK, Romani N, Schuler G. Understanding the dendritic cell lineage through a study of cytokine receptors. Journal of Experimental Medicine 1994; 179: 1767–1776.Google Scholar
  25. 25.
    Zhou L-J, Tedder TF. A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 1995; 86: 3295–3301.PubMedGoogle Scholar
  26. 26.
    Turcovski-Corrales SM, Fenton RG, Peitz G. Taub DD. CD28:B7 interactions promote T cell adhesion. European Journal of Immunology 1995; 25: 3087–3093.PubMedCrossRefGoogle Scholar
  27. 27.
    Péguet-Navarro J, Dalbiez-Gauthier C, Rattis FM, Van Kooten C, Banchereau J. Schmitt D. Functional expression of CD40 antigen on human epidermal Langerhans cells. Journal of Immunology 1995; 155: 4241–4247.Google Scholar
  28. 28.
    Young JW, Inaba K. Dendritic cells as adjuvants for class 1 major histocompatibility complex-restricted antitumor immunity. Journal of Experimental Medicine 1996; 183: 7–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Paglia P, Chiodoni C, Rodolfo M, Colombo MR Murine dendritic cells loaded in vitro iwth soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. Journal of Experimental Medicine 1996; 183: 317–322.PubMedCrossRefGoogle Scholar
  30. 30.
    Knight SC, Hunt R, Dore C, Medawar PB. Influence of dendritic cells on tumor growth. Proceedings of the National Academy of Science 1985; 82: 4495–4497.CrossRefGoogle Scholar
  31. 31.
    Mayordomo, J.1., Zorina, T., Storkus, W.J., Zitvogel, L., Celluzzi, C., Falo, L.D., Melief, C.J., lldstad, S.T., Kast, W.M., DeLeo, A., and Lotze, M.T. Bone marrow derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic anti-tumor immunity. Nature Med. 1: 1297–1302, 1995.Google Scholar
  32. 32.
    Celluzzi, C.M., Mayordomo, J.I., Stookus, W.J., Lotze, M.T., and Falo, L.D. Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J. Exp. Med. 183: 283–288, 1996.PubMedCrossRefGoogle Scholar
  33. 33.
    Flamand, V. Murine Dendritic Cells Pulsed In Huy) with Tumor Antigen Induce Tumor Resistance In Vivo, Eur: J. Immunol. 23: 605–610, 1994.CrossRefGoogle Scholar
  34. 34.
    Zitvogel, L., J. I. Mayordomo, T.Tjandrawan, A. B. DeLeo, M. R. Clarke, M. T. Lotze, and W. J. Storkus. 1996. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell-associated cytokines.J. Exp. Med. 183: 87–97.Google Scholar
  35. 35.
    Zou J-P, Shimizu J, Ikegame K, Takiuchi H, Fujiwara H, Hamaoka T. Tumor-immuotherapy with the use of tumor-antigen-pulsed antigen-presenting cells. Cancer Immunology Immunotherapy 1992; 35: 1–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410, 1993.PubMedCrossRefGoogle Scholar
  37. 37.
    Georgopoulos C and Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9: 601–634, 1993.PubMedCrossRefGoogle Scholar
  38. 38.
    Mariethoz E, Tacchini-Cottier F, Jacquier-Sarlin M, Sinclair F and Polla BS. Exposure of monocytes to heat shock does not increase class II expression but modulates antigen-dependent T cell responses. Int Immunol 6: 925–930, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Polla BS and Mariethoz E. More evidence for a case for chaperones in antigen processing. Immunol Today 13: 421–422, 1992.PubMedCrossRefGoogle Scholar
  40. 40.
    Suto R and Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269: 1585–1588, 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Pierce SK. Molecular chaperones in the processing and presentation of antigen to helper T cells. Experientia 50: 1026–1030, 1994.PubMedCrossRefGoogle Scholar
  42. 42.
    Kaur 1, Voss SD, Gupta RS, Schell K, Fisch P and Sonde! PM.. Human peripheral gamma delta T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells.J Immunol: 2046–2055, 1993.Google Scholar
  43. 43.
    Mazzarella RA and Green M. ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J Biol Chem 262: 8875–8883, 1987.PubMedGoogle Scholar
  44. 44.
    Booth C and Koch GLE. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59: 729–737, 1989.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Kaer L, Ashton-Rickardt PG, Ploegh HL and Tonegawa S. TAPI mutant mice are deficient in antigen presentation, surface class I molecules, and CD4–8+ T cells. Cell 71: 1205–1214, 1991.CrossRefGoogle Scholar
  46. 46.
    Li Z and Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12: 3143–3151, 1993.PubMedGoogle Scholar
  47. 47.
    Levy F, Gabathuler R, Larsson R and Kvist S. Cell 67: 265–274, 1991.Google Scholar
  48. 48.
    Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, Richard M-J and Polla BS. Protective effects of hsp70 in inflammation. Experientia 50: 1031–1038, 1994.PubMedCrossRefGoogle Scholar
  49. 49.
    Udono H and Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178: 1391–1396, 1993.PubMedCrossRefGoogle Scholar
  50. 50.
    Udono H, Levey DL and Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA 91: 3077–3081, 1994.PubMedCrossRefGoogle Scholar
  51. 51.
    Vanbuskirk A, Crump BL, Margoliash E and Pierce SK. A peptide binding protein having a role in antigen presentation is a member of the hsp70 heat shock family. J Exp Med 170: 1799–1809, 1989.PubMedCrossRefGoogle Scholar
  52. 52.
    Udono H and Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol 152: 5398–5403, 1994.PubMedGoogle Scholar
  53. 53.
    Arnold D, Faath S, Rammensee H-G and Schild H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182: 885–889, 1995.PubMedCrossRefGoogle Scholar
  54. 54.
    Srivastava PK, Udono H, Blachere NE and Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39: 93–98, 1994.PubMedCrossRefGoogle Scholar
  55. 55.
    Tsujitani S, Oka A, Kondo A, Ikeguchi M, Maeta M, Kaibara N. Infiltration of dendritic cells into regional lymph nodes in gastric cancer. Cancer 1995; 75 (6 Suppl): 1478–1483.PubMedCrossRefGoogle Scholar
  56. 56.
    van Heerden WF, Raubenheimer EJ, van Rensburg EJ, le Roux R. Lack of correlation between DNA ploidy. Langerhans cell population and grading in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine 1995; 24 (2): 61–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Schreiner TU, Lischka G, Schaumburg-Lever G. Langerhans’ cells in skin tumors. Archives of Dermatology 1995; 131 (2): 187–190.PubMedCrossRefGoogle Scholar
  58. 58.
    Zeid NA, Muller HK. Tobacco smoke condensate cutaneous carcinogenesis: changes in Langerhans’ cells and tumor regression. International Journal of Experimental Pathology 1995;76(1)75:83.Google Scholar
  59. 59.
    Viac J, Schmitt D, Claudy A. TNF alpha expressing cells in epidermal tumors: correlation with ICAM-I induction on keratinocytes and Langerhans cell distribution. In Vivo 1994; 8 (2): 221–225.PubMedGoogle Scholar
  60. 60.
    Alavaikko MJ, Blanco G, Aine R, Lehtinen T, Felbaum C, Taskinen PJ, Sarpola A, Hansmann ML. Follicular dendritic cells have prognostic relevance in Hodgkin’s disease. American Journal of Clinical Pathology 1994; 101 (6): 761–767.PubMedGoogle Scholar
  61. 61.
    Girod SC, Kuhnast T, Ulrich S, Krueger GR. Langerhans cells in epithelial tumors and benign lesions of the oropharynx. In Vivo 1994; 8 (4): 543–547.PubMedGoogle Scholar
  62. 62.
    Srivastava BI, Srivastava A, Srivastava MD. Phenotype, genotype and cytokine production in acute leukemia involving progenitors of dendritic Langerhans’ cells. Leukemia Research 1994; 18 (7): 499–511.PubMedCrossRefGoogle Scholar
  63. 63.
    Kerrebijn JD, Balm AJ, Knegt PP, Meeuwis CA, Drexhage HA. Macrophage and dendritic cell infiltration in head and neck squamous-cell carcinoma: an immunohistochemical study. Cancer Immunology, Immunotherapy 1994; 38 (1): 31–37.CrossRefGoogle Scholar
  64. 64.
    Chan JK, Tsang WY, Ng CS, Tang SK, Yu HC, Lee AW. Follicular dendritic cell tumors of the oral cavity. American Journal of Surgical Pathology. 1994; 18 (2): 148–157.PubMedCrossRefGoogle Scholar
  65. 65.
    Zeid NA, Muller HK. 5100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology 1993; 25 (4): 338–343.PubMedCrossRefGoogle Scholar
  66. 66.
    Anonymous. Anticancer activity of dendritic cells. Symposium proceedings of the 4th International Conference of Anticancer Research. Crete. In Vivo 1993; 7 (3): 185–313.Google Scholar
  67. 67.
    Becker Y. Dendritic cell activity against primary tumors: an overview. In Vivo 1993; 7 (3): 187–191.PubMedGoogle Scholar
  68. 68.
    Lmai Y, Yamakawa M. Dendritic cells in esophageal cancer and lymph node tissues. In Vivo 1993;7(31:239–248.Google Scholar
  69. 69.
    Yamakawa M, Kato H, Takagi S, Karube Y, Seki K, Imai Y. Dendritic cells in various human thyroid diseases. In Vivo 1993; 7 (3): 249–256.PubMedGoogle Scholar
  70. 70.
    Tsujitani S, Kakeji Y, Maehara Y, Sugimachi K, Kaibara N. Dendritic cells prevent lymph node metastasis in patients with gastric cancer. In Vivo 1993; 7 (3): 233–237.PubMedGoogle Scholar
  71. 71.
    Kessler II. Epidemiological considerations in the role of dendritic/Langerhans cells in human cancer. In Vivo 1993; 7 (3): 305–312.PubMedGoogle Scholar
  72. 72.
    Meissner K, Loning T, Rehpenning W. Epidermal Langerhans cells and prognosis of patients with mycosis fungoides and Sezary syndrome. In Vivo 1993; 7 (3): 277–280.PubMedGoogle Scholar
  73. 73.
    Muller HK. Dandle GW, Ragg SI, Woods GM. Langerhans cell alterations in cutaneous carcinogenesis. In Vivo 1993; 7 (3): 293–296.PubMedGoogle Scholar
  74. 74.
    van Rensburg EJ, van Heerden WF, Raubenheimer EJ. Langerhans cells and human papillomaviruses in oesophageal and laryngeal carcinomas. In Vivo 1993,731:229–232.Google Scholar
  75. 75.
    Fink-Puches R, Smolle J. Langerhans cells in epithelial skin tumors. A quantitative immunohistological and morphometric investigation. In Vivo 1993; 7 (3): 213–216.Google Scholar
  76. 76.
    Austyn JM. The dendritic cell system and anti-tumor immunity. In Vivo 1993; 7 (3): 193–201PubMedGoogle Scholar
  77. 77.
    Toriyama K, Wen Dr, Paul E, Cochran AJ. Variations in the distribution, frequency, and phenotype of Langerhans cells during the evolution of malignant melanoma of the skin. Journal of Investigative Dermatology 1993;100(3)269S–273S.Google Scholar
  78. 78.
    Tazi A, Bouchonnet F, Granssaigne M, Boumsell L. Hance AJ, Soler P. Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. Journal of Clinical Investigation 1993;91(2):566 576.Google Scholar
  79. 79.
    Spinollo A. Tenti P, Zappatore R, DeSeta F, Silini E, Guaschino S. Langerhans’ cell counts and cervical intraepithelial neoplasia in women with human immunodeficiency virus infection. Gynecologic Oncology 1993; 48 (2): 210–213.CrossRefGoogle Scholar
  80. 80.
    Morelli AE, Sananes C, DiPaola G, Paredes A, Fainboim L. Relationship between types of human papillomavirus and Langerhans’ cells in cervical condyloma and intraepithelial neoplasia. American Journal of Clinical Pathology. 1993; 99 (2): 200–206.PubMedGoogle Scholar
  81. 81.
    Drexhage HA. Mooy R, Jansen A, Kerregijn J. Allaerts W, Tas MP. Dendritic cells in tumor growth and endocrine diseases. Advances in Experimental Medicine and Biology. 1993; 329: 643–650.PubMedCrossRefGoogle Scholar
  82. 82.
    Tas MP, Simons PJ, Balin FJ, Drexhage HA. Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer: in vitro restoration of this immunosuppression by thymic hormones. Cancer immunology, Immunotherapy 1993: 36 (2): 108–114.CrossRefGoogle Scholar
  83. 83.
    Koretz K, Moller P, Schwartz-Albiez R. Plasminogen activators and plasminogen activator inhibitors in human colorectal carcinoma tissues are not expressed by the tumor cells. European Journal of Cancer 1993;29A(8):í 184–1189.Google Scholar
  84. 84.
    Tsujitani S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimaghi K. Infiltration of S-100 protein positive dendritic cells and peritoneal recurrence in advanced gastric cancer. International Surgery 1992: 77 (4): 238–241.PubMedGoogle Scholar
  85. 85.
    Fivenson DP, Beck ER, Dunstan RW, Nickoloff BJ, Moore PF. Dermal dendrocytes and I-cells in canine mycosis fungoides. Support for an animal model of human cutaneous T-cell lymphoma. Cancer 1992;70(8):2091–2098.Google Scholar
  86. 86.
    Regezi JA, Nickoloff B.l, Headington JT. Oral submucosal dendrocytes: factor XII la+ and CD34+ dendritic cell population in normal tissue and fibrovascular lesions. Journal of Cutaneous Pathology 1992;19(5):398–406.Google Scholar
  87. 87.
    Tsujitani S. Kakeji Y, Orita H, Watanabe A, Kohnoe S. Baba H, Anai H, Machara Y, Sugimachi K. Postoperative adjuvant immunochemotherapy and infiltration of dendritic cells for patients with advanced gastric cancer. Anticancer Research 1992;12(3)1645–648.Google Scholar
  88. 88.
    Morelli AE, Ronchetti RD. Secchi AD, Cufre MA, Paredes A, Fainboim L. Assessment by planimetry of Langerhans’ cell density in penile epithelium with human papillomavirus infection: changes observed after topical treatment. Journal of Urology 1992; 147 (5): 1268–1273.PubMedGoogle Scholar
  89. Stene MA. Holthoj-Asnong C, Cochran AJ. Effect of epidermal Langerhans cells from melanoma patients on lymphoproliferative responses. Melanoma Research 1992;2(1):57–62.Google Scholar
  90. 90.
    Daniels TE, Chou L, Greenspan JS, Grady DG, Hauch WW, Greene JC, Ernster VL. Reduction of Langerhans cells in smokeless tobacco-associated oral mucosal lesions. Journal of Oral Pathology and Medicine 1992;21(3):100 104.Google Scholar
  91. 91.
    Nakano T, Oka K, Takahashi T, Moria S, Arai T. Roles of Langerhans’ cells and T-lymphocytes infiltrating cancer tissues in patients treated by radiation therapy for cervical cancer. Cancer 1992; 70 (I 2): 2839–2844.PubMedCrossRefGoogle Scholar
  92. 92.
    Bergfelt L, Larko O, Lindberg M. Density and morphology of Langerhans cells in basal cell carcinomas of the face and trunk. British Journal of Dermatology 1992; 127 (6): 575–579.PubMedCrossRefGoogle Scholar
  93. 93.
    Papadimitriou CS, Datseris G, Costopoulos JS, Bai MK, loachim-Velogianni E, Katsouyannopoulos V. Langerhans cells and lymphocyte subsets in human gastrointestinal carcinomas. An immunohistological study on frozen sections. Pathology, Research and Practice. 1992; 188 (8): 989–994.Google Scholar
  94. 94.
    Kumar D, Sanchez RL, Kumar S. Dendrocyte population in cutaneous and extracutaneous Kaposi’s sarcoma. American Journal of Dermatopathology 1992; 14 (4): 298–303.PubMedCrossRefGoogle Scholar
  95. 95.
    Tosi P, Sforza V, Santopietro R, Lio R, Gotti G, Paladini P, Cevenini G, Barbini P. Bronchiolo-alveolar carcinoma: an analysis of survival predictors. European Journal of Cancer 1992; 28A (8–9): 1365–1370.CrossRefGoogle Scholar
  96. 96.
    Morelli AE, di Paola G, Fainboam L. Density and distribution of Langerhans cells in the human uterine cervix. Archives of Gynecology and Obstetrics 1992; 252 (2): 65–71.PubMedCrossRefGoogle Scholar
  97. 97.
    Furihata M, Ohsuki Y, Ido E, Iwata J, Sonobe H, Araki K, Ogoshi S, Ohmori K. HLA-DR antigen-and 5100 protein-positive dendritic cells in esophageal squamous cell carcinoma–their distribution in relation to prognosis. Virchows Archiv. B. Cell Pathology Including Molecular Pathology 1992; 61 (6): 409–414.Google Scholar
  98. 98.
    Gallo O, Bianchi S, Giannini A, Gallina E, Libonati GA, Fini-Storchi O. Correlations between histopathological and biological findings in nasopharyngeal carcinoma and its prognostic significance. Laryngoscope 1991; 101 (5): 487–493.PubMedCrossRefGoogle Scholar
  99. 99.
    Gomez-Morales M, Alvaro T, Munoz M. Garcia del Moral R, Aguilar D, Caballero T, Aneiros J. Diffuse sclerosing papillary carcinoma of the thyroid gland: immunohistochemical analysis of the local host immune response. Histopathology 1991; 18 (5): 427–433.PubMedCrossRefGoogle Scholar
  100. 100.
    Wilson AJ, Maddoz PH, Jenkins D. CDIa and S100 antigen expression in skin Langerhans cells in patients with breast cancer. Journal of Pathology 1991; 163 (1): 25–30.PubMedCrossRefGoogle Scholar
  101. 101.
    Tefany FJ, Barnetson RS, Halliday GM, McCarthy SW, McCarthy WH. Immunocytochemical analysis of the cellular infiltrate in primary regressing and non-regressing malignant melanoma. Journal of Investigative Dermatology 1991; 97 (2): 197–202.PubMedCrossRefGoogle Scholar
  102. 102.
    Bigotti G, Coli A, Castagnola D. Distribution of Langerhans cells and HLA class 11 molecules in prostatic carcinomas of different histopathological grade. Prostate 1991; 19 (1): 73–87.PubMedCrossRefGoogle Scholar
  103. 103.
    Rucci L, Bani D, Gallo O, Arbi Riccardi R, Borghi Cirri MB, Fini-Storchi O. Interdigitating cells in the peritumoral infiltrate of laryngeal carcinomas: an immunocytochemical and ultrastructural study. Orl: Journal of Oto-Rhino-Laryngology and its Related Specialities. 1991;53(6):349356.Google Scholar
  104. 104.
    Scheicher C, Mehlig M, Dienes H-P, Reske K. Uptake of microparticle-absorbed protein antigen by bone marrow-derived dendritic cells results in up-regulation of interleukin-la and interleukin-12 p40/p35 and triggers prolonged, efficient antigen presentation. Eur. J. Immunol. 25: 1566–1572, 1995.PubMedCrossRefGoogle Scholar
  105. 105.
    Jansen JH, Wientjens G-JHM, Fibbe WE, Willemze R, Kluin-Nelemans HC. Inhibition of human macrophage colony formation by interleukin 4. J. Exp. Med. 170: 577–582, 1989.PubMedCrossRefGoogle Scholar
  106. 106.
    Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. J. Exp. Med. 182: 389–400, 1995.PubMedCrossRefGoogle Scholar
  107. 107.
    Snyder DS, Beller Dl, Unanue ER. Prostaglandins modulate macrophage la expression. Nature 299: 163–165, 1982.PubMedCrossRefGoogle Scholar
  108. 108.
    Gentile PS, Pelus LM. In vivo modulation of myelopoiesis by prostaglandin E2. 11.Inhibition of granulocyte-macrophage progenitor cell (CFU-GM) cycle rate. Exp. Hematol. 15:119–126, 1987.Google Scholar
  109. 109.
    Pelus LM, Ottmann OG, Nocka KH. Synergistic inhibition of human marrow granulocyte-macrophage progenitor cells by PgE and recombinant interferon-a, -ß, and -y and an effect mediated by tumor necrosis factor. J. Immunol. 140: 479–484, 1988.PubMedGoogle Scholar
  110. 110.
    Nussler AK, Billiar TR. Inflamation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 54: 171–178, 1993.PubMedGoogle Scholar
  111. 111.
    Lu L, Bonham, Chambers F, Watkins S, Hoffman R, Simmons D, Thomson A. Induction of nitric oxide production by mouse dendritic cells in response to interferon-y, endotoxin and interaction with allogeneic T cells: Induction of nitric oxide synthase is associated with dendritic cell apoptosis. Submitted.Google Scholar
  112. 112.
    Inaba K, Steinmann RM, Pack MW, Aya H, Inaba M, Sudo T, Wolpe S, Schuler G. Identification of proliferating dendritic cell precursor in mouse blood. J. Exp. Med. 175:1157–1167, 1992(b).Google Scholar
  113. 113.
    Szabolcs P, Moore MAS, Ydung JW. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, GM-CSF, and TNF-a. J. Immunol. 154: 5851–5861, 1995.PubMedGoogle Scholar
  114. 114.
    Romani N., Gruner S., Brang D. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180: 83–93.Google Scholar
  115. 115.
    Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class 11 compartment: Downregulation by cytokines and bacterial products. J. Exp. Med. 182: 389–400, 1995.PubMedCrossRefGoogle Scholar
  116. 116.
    Galy A., Travis M., Cen D., Chen B. Human T, B, Natural Killer, and Dendritic Cells arise from a common bone marrow progenitor cell subset. Immunity 3: 459–471, 1995.PubMedCrossRefGoogle Scholar
  117. 117.
    Maraskovsky E., Brasel K., Teepe M., Roux E., Shortman K., Lyman S.D., McKenna H.J. In vivo administration of flt3 ligand results in the generation of large numbers of dendritic cells in the lymphoid tissue of mice. In press.Google Scholar
  118. 118.
    Porgador A. and Gilboa, E. Bone-Marrow-Generated Dendritic Cells Pulsed with a Class I-Restricted Peptide are Potent Inducers of Cytotoxic T Lymphocytes, J. Exp. Med. 182: 255–260, 1995.PubMedCrossRefGoogle Scholar
  119. 119.
    Grabbe, S. Tumor Antigen Presentation by Murine Epidermal Cells, J. Immunol. 146: 3656–3661, 1991.PubMedGoogle Scholar
  120. 120.
    Mayordomo, J.I., Loftus, D.J., Sakamoto, H., Lotze, M.T., Strokus, W.J., Appella, E., and DeLeo, A.B. THerapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J. Exp. Med. 183: 1357–1365, 1996.PubMedCrossRefGoogle Scholar
  121. 121.
    Zitvogel, L., Mayordomo, J.I., Tjandrawan, T., DeLeo, A.B., Clarke, M.R., Lotze, M.T., and Storkus, W.J. Therapy of Murine Tumors with Tumor Peptide Pulsed Dependence on T-cells, B7 Costimulation, and Thl-Associated Cytokines, J. Exp. Med. 183: 87–98, 1996.PubMedCrossRefGoogle Scholar
  122. 122.
    Kerrebijn, J.D., et al. Macrophage and Dendritic Cell Infiltration in Head and Neck Squamous-Cell Carcinoma; An Immunohistochemical Study, Cancer Immunol. Immunother: 38: 31–37, 1994.CrossRefGoogle Scholar
  123. 123.
    Zeid, N.A. and Muller, H.K. S100 Positive Dendritic Cells in Human Lung Tumors Associated with Cell Differentiation and Enhanced Survival, Pathol. 25: 338–343, 1993.CrossRefGoogle Scholar
  124. 124.
    Gallo, O., et al. Langerhans Cells Related to Prognosis in Patients with Larygeal Carcinoma, Arch. Otolaryngol. 117: 1007–1010, 1991.CrossRefGoogle Scholar
  125. 125.
    Giannini, A., et al. Prognostic Significance of Accessory Cells and Lymphocytes in Nasopharygeal Carcinoma. Pathol. Res. Pract. 187: 486–502, 1991.CrossRefGoogle Scholar
  126. 126.
    Tjandrawan, T., Macurer, M.i., Castelli, C., Lotze, M.T., and Storkus, W.J. Autologous Dendritic Cells Pulsed with MART-1/Melan-A, gp100. tyrosinase, or MAGE-3 Peptides Elicit Anti-Melanoma CTL From both Normal Donor and Cancer Patient Peripheral Blood Lymphocytes In Vitro. Submitted for publication. 1996.Google Scholar
  127. 127.
    Hsu, F.J., Benike, C., Franjoli, F.. Lilies, T.M., Tzerwinsky, T., et al. Vaccination of patients with 13 cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2: 52–55, 1996.Google Scholar
  128. 128.
    F. Sallusto and A. Lanzavecchia, Efficient Presentation of Soluble Antigen by Cultured Human Dendritic Cells is Maintained by Granulocyte/Macrophage Colony-Stimulating Factor Plus Interleukin 4 and Down-regulated by Tumor Necrosis Factor Alpha, J. Exp. Med. 179: 1109–1118, 1994.PubMedCrossRefGoogle Scholar
  129. 129.
    Romani, N., Gruner. S., Brang, D., Kampgen, E., Lenz, A., et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180: 83–93, 1994.Google Scholar
  130. 130.
    Bakker, A.B., Marland, G., De Boer, A.J., Danen, H., Adema, G.J., and Figdor, C.G. Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro. Cancer Res. 55: 5330–5339, 1995.Google Scholar
  131. 131.
    Storkus, W.J., and Lotze, M.T. Biology of Tumor Antigens: Tumor Antigens Recognized By Immune Cells. In: V. DeVita, S. Hellman, and S. Rosenberg (Eds.), Biologic Therapy of Cancer, 2nd. ed. J.B. Lippincott Company. Philadelphia. 1995. pp. 64–77.Google Scholar
  132. 132.
    Zitvogel, L., Couderc, B., Mayordomo, J.1., Robbins, P.D., Lotze, M.T., and Storkus, W.J. IL-12 engineered dendritic cells serve as effective tumor vaccine adjuvants in vivo. New York. Acad. Sci.,in press, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Michael T. Lotze
    • 1
    • 2
  • Michael Shurin
    • 1
    • 2
  • Ian Davis
    • 1
    • 2
  • Andrew Amoscato
    • 1
    • 2
  • Walter J. Storkus
    • 1
    • 2
  1. 1.Departments of Surgery,and Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Biological Therapeutics DivisionUniversity of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations