Advertisement

Dramatic Numerical Increase of Functionally Mature Dendritic Cells in FLT3 Ligand-Treated Mice

  • Eugene Maraskovsky
  • Bali Pulendran
  • Ken Brasel
  • Mark Teepe
  • Eileen R. Roux
  • Ken Shortman
  • Stewart D. Lyman
  • Hilary J. Mckenna
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

Dendritic cells (DC) are rare hematopoietic-derived cells that are predominantly found in the T-cell-dependent areas of lymphoid tissue, as well as other tissues of the body1. These cells express high levels of class I and class II major histocompatibility complex (MHC) proteins, CD11c2, the mannose-receptor like protein DEC2053,4 and adhesion and costimulatory molecules1. A substantial proportion of DC express CD8α as a homodimer5. DC specialize in processing and presenting foreign and self antigens to induce immunity1 or tolerance6,7. The lineage derivation of DC remains controversial, but there is growing evidence that DC can be subdivided into myeloid-derived8–17 and lymphoid-derived populations17–19.

Keywords

Dendritic Cell Major Histocompatibility Complex Spleen Cell Keyhole Limpet Hemocyanin Mature Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Steinman, The dendritic cell system and its role in immunogenicity, Annu. Rev. Immunol. 9: 271 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    J.P. Metlay, M.D. Witmer-Pack, R. Agger, M.T. Crowley, D. Lawless, and R.M. Steinman, The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies, J. Exp. Med. 171: 1753 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Kraal, M. Breel, M. Janse, and G. Bruin, Langerhans’ cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody, J. Exp. Med. 163: 981 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    W. Jiang, W.J. Swiggard, C. Heufler, M. Peng, A. Mirza, R.M. Steinman, and M.C. Nussenzweig, The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing, Nature 375: 151 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Vremec, M. Zorbas, R. Scollay, D.J. Saunders, C.F. Ardavin, L. Wu, and K. Shortman, The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells, J. Exp. Med. 176: 47 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Matzinger and S. Guerder, Does T-cell tolerance require a dedicated antigen-presenting cell?, Nature 338: 74 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    O. Mazda, Y. Watanabe, J.-1. Gyotoku, and Y. Katsura, Requirement of dendritic cells and B cells in the clonal deletion of Mls-reactive T cells in the thymus, J. Exp. Med. 173: 539 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Inaba, K. Inaba, M. Hosono, T. Kumamoto, T. Ishida, S. Muramatsu, T. Masuda, and S. Ikehara, Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells, J. Exp. Med. 173: 549 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Inaba, M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R.M. Steinman, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J. Exp. Med. 176: 1693 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Inaba, R.M. Steinman, M.W. Pack, H. Aya, M. Inaba, T. Sudo, S. Wolpe, and G. Schuler, Identification of proliferating dendritic cell precursors in mouse blood, J. Exp. Med. 175: 1157 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Inaba, M. Inaba, M. Deguchi, K. Hagi, R. Yasumizu, S. Ikehara, S. Muramatsu, and R.M. Steinman, Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow, Proc. Natl. Acad. Sci. USA 90: 3038 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Caux, C. Dezutter-Dambuyant, D. Schmitt, and J. Banchereau, GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells, Nature 360: 258 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a, J. Exp. Med. 179: 1109 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Romani, S. Gruner, D. Brang, E. Kämpgen, A. Lenz, B. Trockenbacher, G. Konwalinka, P.O. Fritsch, R.M. Steinman, and G. Schuler, Proliferating dendritic cell progenitors in human blood, J. Exp. Med. 180: 83 (1994).PubMedCrossRefGoogle Scholar
  15. 15.
    J.W. Young, P. Szabolcs, and M.A.S. Moore, Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor a, J. Exp. Med. 182: 1111 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Szabolcs, M.A.S. Moore, and J.W. Young, Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-a, J. Immunol. 154: 5851 (1995).PubMedGoogle Scholar
  17. 17.
    C. Caux and J. Banchereau In vitro regulation of dendritic cell development and function, in:“Blood Cell Biochemistry, Vol.7: Hemopoietic growth factors and their receptors,” A. Whetton and J. Gordon, eds., Plenum Press, London (1996, in press).Google Scholar
  18. 18.
    C. Ardavin, L. Wu, C.-L. Li, and K. Shortman, Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population, Nature 362: 761 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Galy, M. Travis, D. Cen, and B. Chen, Human T. B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset, Immunity 3: 459 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    J.I. Mayordomo, T. Zorina, W.J. Storkus, L. Zitvogel, C. Celluzzi, L.D. Falo, C.J. Melief, S.T. lldstad, W.M. Kast, A.B. Deleo, and M.T. Lotze, Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity, Nat. Med. 1: 1297 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    A.W. Thomson, L. Lu, N. Murase, A.J. Demetris, A.S. Rao, and T.E. Starzl, Microchimerism, dendritic cell progenitors and transplantation tolerance, Stem Cells 13: 622 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    J.W. Young and K. Inaba, Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity, J. Exp. Med. 183: 7 (1996).PubMedCrossRefGoogle Scholar
  23. 23.
    D. Metcalf, K. Shortman, D. Vremec, S. Mifsud, and L. Di Rago, Effects of excess GM-CSF levels on hematopoiesis and leukemia development in GM-CSF/max 41 double transgenic mice, Leukemia 10: 713 (1996).PubMedGoogle Scholar
  24. 24.
    S.D. Lyman, L. James, T. VandenBos, P. de Vries, K. Brasel, B. Gliniak, L.T. Hollingsworth, K.S. Picha, H.J. McKenna, R.R. Splett, F.A. Fletcher, E. Maraskovsky, T. Farrah, D. Foxworthe, D.E. Williams, and M.P. Beckmann, Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells., Cell 75: 1157 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    S.D. Lyman, Biology of Flt3 ligand and receptor, Int. J. Hematol. 62: 63 (1996).CrossRefGoogle Scholar
  26. 26.
    H.J. McKenna and S.D. Lyman Biology of Flt3 ligand, a novel regulator of hematopoietic stem and progenitor cells, in: “Bone Marrow Transplantation: Basic and Clinical Studies,” S. Ikehara, F. Takaku, and R.A. Good, eds., Springer, (1996).Google Scholar
  27. 27.
    M. Crowley, K. Inaba, M. Witmer-Pack, and R.M. Steinman, The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus, Cell. Immunol. 118: 108 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    M.C. Nussenzweig, R.M. Steinman, M.D. Witmer, and B. Gutchinov, A monoclonal antibody specific for mouse dendritic cells, Proc. Natl. Acad. Sci. USA 79: 161 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Maraskovsky, K. Brasel, M. Teepe, E.R. Roux, S.D. Lyman, K. Shortman, and H.J. McKenna, Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified, J. Exp. Med., in press. (1996).Google Scholar
  30. 30.
    K. Inaba, J.P. Metlay, M.T. Crowley, and R.M. Steinman, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172: 631 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    L. Wu, D. Vremec, C. Ardavin, K. Winkel, G. Süss, H. Georgiou, E. Maraskovsky, W. Cook, and K. Short-man, Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation, Eur. J. Immunol. 25: 418 (1995).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Brasel, H.J. McKenna, K. Charrier, P. Morrissey, D.E. Williams, and S.D. Lyman, Mobilization of peripheral blood progenitor cells with Flt3 ligand, Blood 86: 463a (1995).Google Scholar
  33. 33.
    K. Brasel, H.J. McKenna, P.J. Morrissey, K. Charrier, A.E. Morris, C.C. Lee, D.E. Williams, and S.D. Lyman, Hematological effects of Flt3 ligand in vivo in mice, Blood 88: 2004 (1996).Google Scholar
  34. 34.
    E. Maraskovsky, E. Roux, M. Tepee, H.J. McKenna, K. Brasel, S.D. Lyman, and D.E. Williams, The effect of Flt3 ligand and/or c-kit ligand on the generation of dendritic cells from human CD34+ bone marrow, Blood 86: 420a (1995).Google Scholar
  35. 35.
    S. Siena, M. Di Nicola, M. Bregni, R. Mortarini, A. Anichini, L. Lombardi, F. Ravagnani, G. Parmiani, and A.M. Gianni, Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy, Exp. Hematol. 23: 1463 (1995).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eugene Maraskovsky
    • 1
  • Bali Pulendran
    • 1
  • Ken Brasel
    • 1
  • Mark Teepe
    • 1
  • Eileen R. Roux
    • 1
  • Ken Shortman
    • 3
  • Stewart D. Lyman
    • 2
  • Hilary J. Mckenna
    • 1
  1. 1.Department of ImmunobiologyImmunex CorporationSeattleUSA
  2. 2.Department of Molecular GeneticsImmunex CorporationSeattleUSA
  3. 3.The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia

Personalised recommendations