Advertisement

CD34+ Hematopoietic Progenitors from Human Cord Blood Differentiate Along two Independent Dendritic Cell Pathways in Response to GM-CSF+TNFα

  • C. Caux
  • C. Massacrier
  • B. Vanbervliet
  • B. Dubois
  • B. de Saint-Vis
  • C. Dezutter-Dambuyant
  • C. Jacquet
  • D. Schmitt
  • J. Banchereau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

DC are professional antigen presenting cells which are required for the initiation of immune responses. Many types of DC with subtle differences in phenotype have been described in peripheral blood, skin and lymphoid organs (1–8). Although each of these DC subsets display the ability to activate naive T cells, it is not clear whether they represent different stages of maturation of a unique DC lineage or whether they stem from different progenitors. In this study we demonstrate that in presence of GM-CSF+TNFα i) human myeloid progenitors can differentiate along two unrelated DC pathways: the Langerhans cells (LC) characterized by the expression of CD la, Lag, Birbeck granules (BG) and E cadherin and a CD14-derived DC, related to monocyte-derived DC, characterized by the expression of CD la, CD9, CD2 and factor XIIIa. ii) These two subsets display properties expected for DC, but in cocultures with CD40-activated naive B cells only the CD 14+ derived DC can induced the production of IgM in presence of IL-2. These results suggest that the CD14-derived DC type might be preferentially involved in development of humoral responses, while both populations can induce T cell priming.

Keywords

Dendritic Cell Human Immunodeficiency Virus Type Hematopoietic Progenitor Factor XIIIa Professional Antigen Present Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. O’Doherty, M. Peng, S. Gezelter, W.J. Swiggard, M. Betjes, N. Bhardwaj, and R.M. Steinman. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology. 82: 487 (1994).PubMedGoogle Scholar
  2. 2.
    R. Thomas, and P.E. Lipsky. Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells. J. Immunol. 153: 4016 (1994).PubMedGoogle Scholar
  3. 3.
    D. Weissman, Y. Li, J. Ananworanich, L.-J. Zhou, J. Adelsberger, T.F. Tedder, M. Baseler, and A.S. Fauci. Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infect-able with human immunodeficiency virus type I. Proc. Natl. Acad. Sci. USA. 92: 826 (1995).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Lenz, M. Heine, G. Schuler, and N. Romani. Human and murine dermis contain dendritic cells.. 1. Clin. Invest. 92: 2587 (1993).CrossRefGoogle Scholar
  5. 5.
    F.O. Nestle, X.-G. Zheng, C.B. Thompson, L.A. Turka, and B.J. Nickoloff. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 151: 6535 (1993).PubMedGoogle Scholar
  6. 6.
    R. Agger, M. Witmer-Pack, N. Romani, H. Stossel, W.J. Swiggard, J.P. Metlay, F. Storozynsky, P. Freimuth, and R.M. Steinman. Two populations of splenic dendritic cells detected with M342, a new monoclonal to an intracellular antigen of interdigitating dendritic cells and some B lymphocytes.. 1. Leukocyte Biol. 52: 34 (1992).Google Scholar
  7. 7.
    B.L. Kelsall, and W. Strober. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J. Exp. Med. 183: 237 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Grouard, I. Durand, L. Filgueira, J. Banchereau, and Y.J. Liu. Dendritic cells capable of stimulating T cells in germinal centers. Nature. 384: 364 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Caux, C. Dezutter-Dambuyant, D. Schmitt, and J. Banchereau. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature. 360: 258 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Szabolcs, M.A.S. Moore, and J.W. Young. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34’ bone marrow precursors cultured with c-kit-ligand, GM-CSF. and TNFa. J. Immunol. 154: 5851 (1995).PubMedGoogle Scholar
  11. 11.
    C. Caux, B. Vanbervliet, C. Massacrier, C. Dezutter-Dambuyant, B. de Saint-Vis, C. Jacquet, K. Yoneda, S. Imamura, D. Schmitt, J. Banchereau. CD34’ hematopoietic progenitors from human cord blood diffentiate along two independent dendritic cell pathways in response to GM-CSF+TNFa, J. Exp. Med. 184: 695 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    F. Sallusto, and A. Lanzavecchia. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179: 1109 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    N. Romani, S. Gruner, D. Brang, E. Kämpgen, A. Lenz, B. Trockenbacher, G. Konwalinka, P.O. Fritsch, R.M. Steinman, and G. Schuler. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180: 83 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    L.-J. Zhou, and T.F. Tedder. CD14+ blood monocytes can differentiate into functionally mature CD83’ dendritic cells. Proc. Natl. Acad. Sci. USA. 93: 2588 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia. Dendritic cells use macropinocytosis and the man-nose receptor to concentrate macromolecules in the major histocompatibility complex class Il compartment: down-regulation by cytokines and bacterial products. J. Exp. Med. 182: 389 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    B. Dubois, B. Vanbervliet, J. Fayette, C. Massacrier, C. Van Kooten, F. Brière, J. Banchereau, C. Caux. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes, Submitted.. Google Scholar
  17. 17.
    C. Ardavin, L. Wu, C.L. Li, and K. Shortman. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature. 362: 761 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • C. Caux
    • 1
  • C. Massacrier
    • 1
  • B. Vanbervliet
    • 1
  • B. Dubois
    • 1
  • B. de Saint-Vis
    • 1
  • C. Dezutter-Dambuyant
    • 2
  • C. Jacquet
    • 2
  • D. Schmitt
    • 2
  • J. Banchereau
    • 1
  1. 1.Schering-PloughLaboratory for Immunological ResearchDardillyFrance
  2. 2.INSERM U346Hopital Edouard HerriotLyonFrance

Personalised recommendations