Processing of Exogenous Protein Antigen by Murine Dendritic Cells for Presentation to Cytotoxic T Lymphocytes

  • Marloes L. H. De Bruijn
  • Danita H. Schuurhuis
  • Hans Vermeulen
  • Karin A. J. de Cock
  • Cornelis J. M. Melief
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


Generation of cytotoxic T lymphocytes (CTL) from quiescent CD8+ precursors can be achieved by stimulation with professional antigen-presenting cells (APC), dendritic cells (DC). With the elucidation of CTL epitopes that can be manufactured synthetically, in vitro CTL responses specific for these peptides can be established with DC (l–3). In these studies, DC of supposedly mature phenotype were used, i.e. derived from murine spleens.


Dendritic Cell Exogenous Antigen Murine Dendritic Cell Dendritic Cell Preparation Dendritic Cell Progenitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inaba, K., Young, J.W. and Steinman, R.M., 1987, Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells, J. Exp. Med. 166: 182.PubMedCrossRefGoogle Scholar
  2. 2.
    Macatonia, S.E., Taylor, P.M., Knight, S.C. and Askonas, B.A., 1989, Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro, J. Exp. Med. 169: 1255.PubMedCrossRefGoogle Scholar
  3. 3.
    De Bruijn, M.L.H., Nieland, J.D., Schumacher, T.N.M., Ploegh, H.L., Kast, W. Martin and Melief, C.J.M., 1992, Mechanisms of induction of primary virus-specific cytotoxic T lymphocyte responses, Eur. J. lmmunol. 22: 3013.CrossRefGoogle Scholar
  4. 4.
    Schuler, G. and Steinman, R.M., 1985, Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 172: 383.Google Scholar
  5. 5.
    Romani, N., Koide, S., Crowley, M., Witmer-Pack, M., Livingstone, A.M., Fathman, C.G., Inaba, K. and Steinman, R.M., 1989, Presentation of exogenous protein antigen by dendritic cells to T cell clones. Intact protein is presented best by immature epidermal Langerhans cells, J. Exp. Med. 169: 1169.PubMedCrossRefGoogle Scholar
  6. 6.
    Streilein, J.W. and Grammer, S.F., 1989, In vitro evidence that Langerhans cells can adopt two functionally distinct forms of antigen presentation to T lymphocytes, J lmmunol. 143: 3925.Google Scholar
  7. 7.
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., and Steinman, R.M., 1992, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J. Exp. Med. 176: 1693.PubMedCrossRefGoogle Scholar
  8. 8.
    Inaba, K., Steinman, R.M., Witmer Pack, M., Aya, H., Inaba, M., Sudo, T., Wolpe, S. and Schuler, G., 1992, Identification of proliferating dendritic cell precursors in mouse blood, J. Exp. Med. 175: 1157.PubMedCrossRefGoogle Scholar
  9. 9.
    Scheicher, C., Mehlig, M., Zecher, R. and Reske, K., 1992, Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-stimulating factor, J. Immunol. Methods 154: 253.PubMedCrossRefGoogle Scholar
  10. 10.
    Reid, C.D., Stackpoole, A., Meager, A. and Tikerpae, J., 1992, Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow, J. lmmunol. 149: 2681.Google Scholar
  11. 11.
    Romani, N., Gruner, S., Brang, D., Kämpgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch P.O., Steinman, R.M. and Schuler, G., 1994, Proliferating dendritic cell progenitors in human blood, J. Exp. Med. 180: 83.PubMedCrossRefGoogle Scholar
  12. 12.
    Sallusto, F. and Lanzavecchia, A., 1994, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alfa, J. Exp. Med. 179: 1109.PubMedCrossRefGoogle Scholar
  13. 13.
    Girolomoni, G., Simon, J.C., Bergstresser, P.R. and Cruz, P.D. Jr., 1990, Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short term culture, J. lmmunol. 145: 2820.Google Scholar
  14. 14.
    Austyn, J.M., 1992, Antigen uptake and presentation by dendritic leukocytes, Semin. Immunol. 4: 227.PubMedGoogle Scholar
  15. 15.
    Nijman, H.W., Kleijmeer, M.J., Ossevoort, M.A., Oorschot V.M.J., Vierboom, M.P.M., van de Keur, M., Kenemans, P., Kast, W.M., Geuze, H.J. and Melief, C.J.M., 1995, Antigen capture and MHC class II compartments of freshly isolated and cultured human blood dendritic cells, J. Exp. Med. 182: 163.Google Scholar
  16. 16.
    Aiba, S. and Katz, S.I., 1991, The ability of cultured Langerhans cell to process and present protein antigens is MHC-dependent, J. Immunol. 146: 2479.PubMedGoogle Scholar
  17. 17.
    De Bruijn, M.L.H., Nieland, J.D., Harding, C.V. and Melief, C.J.M., 1992, Processing and presentation of intact hen egg-white lysozyme by dendritic cells, Eur. J. Immunol. 22: 2347.Google Scholar
  18. 18.
    Bender, A., Kim Bui, L., Feldman, M.A.V, Larsson, M. and Bhardwaj, N., 1995, Inactivated Influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses, J. Exp. Med. 182: 1663.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfeifer, J.D., Wick, M.J., Roberts, R.L., Findlay, K., Normark, S.J. and Harding, C.V., 1993, Phagocytic processing of bacterial antigens for class I MHC presentation to T cells, Nature 361: 359.PubMedCrossRefGoogle Scholar
  20. 20.
    Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. and Rock, K.L., 1993, Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages, Proc. Natl. Acad. Sci. USA 90: 4942.PubMedCrossRefGoogle Scholar
  21. 21.
    Harding, C.V. and Song, R., 1994, Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules, J. Immunol. 153: 4925.PubMedGoogle Scholar
  22. 22.
    De Bruijn, M.L.H., Jackson, M.R. and Peterson, P.A., 1995, Phagocyte-induced antigen-specific activation of unprimed CD8+ T cells in vitro, Eur. J. Immunol. 25: 1274.PubMedCrossRefGoogle Scholar
  23. 23.
    Reis e Sousa, C., Stahl, P.D. and Austyn, J.M., 1993, Phagocytosis of antigens by Langerhans cells in vitro, J. Exp. Med. 178: 509.CrossRefGoogle Scholar
  24. 24.
    Inaba K., Inaba., M., Saito, M. and Steinman, R.M., 1993, Dendritic cells progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo, J. Exp. Med. 178: 479.PubMedCrossRefGoogle Scholar
  25. 25.
    Austyn., J., 1996. New insights into mobilization and phagocytic activity of dendritic cells, J. Exp. Med. 183: 1287.PubMedCrossRefGoogle Scholar
  26. 26.
    Ossevoort, M.A., Feltkamp, M.C., van Veen, K.J., Melief, C.J.M. and Kast, W.M., 1995, Dendritic cells as carriers for a CTL epitope-based peptide vaccin in protection against a HPV 16-induced tumor, J. Immunotherapy 18: 86.CrossRefGoogle Scholar
  27. 27.
    Celluzzi, C.M., Mayordomo, J.I., Storkus, W.J., Lotze, M.T. and Falo, L.D. Jr., 1996, Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity, J. Exp. Med. 183: 283.PubMedCrossRefGoogle Scholar
  28. 28.
    Porgador, A., Snyder, D., and Gilboa, E., 1996, Induction of antitumor immunity using bone marrow-generated dendritic cells, J. Immunol. 156: 2918.PubMedGoogle Scholar
  29. 29.
    Mayordomo, J.I., Zorina, T., Storkus, W.J., Zitvogel, L., Celluzi, C., Falo, L.D., Melief, C.J.M, Ildstad, S.T., Kast, W.M., DeLeo, A.B. and Lotze, M.T., 1995, Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity, Nature Medicine l: 1297.Google Scholar
  30. 30.
    Mayordomo, J.I., Loftus, D.J., Sakamoto, H., Cesare, C.M., Appasamy, P.M., Lotze, M.T., Storkus, W.J., Appella, E. and DeLeo A.B., 1996, Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines, J. Exp. Med. 183: 1357.PubMedCrossRefGoogle Scholar
  31. 31.
    Zitvogel L., Mayordomo, J.I., Tjandrawan, T., DeLeo, A.B., Clarke, M.R., Lotze, M.T. and Storkus, W.J., 1996, Therapy of murine tumors with tumor peptide pulsed dendritic cells: dependence on T cells, B7 costimulation, and Thl-associated cytokines, J.Exp. Med. 183: 87.PubMedCrossRefGoogle Scholar
  32. 32.
    Hsu, F.J., Benike, C., Fagnoni, F., Liles, T.M., Czerwinski D., Taidi, B., Engelman, E.G. and Levy, R., 1996, Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells, Nature Medicine 2: 52PubMedCrossRefGoogle Scholar
  33. 33.
    Inaba, K., Metlay, J.P., Crowley, M.T. and Steinman, R.M., 1990, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J. Exp. Med. 172: 631.PubMedCrossRefGoogle Scholar
  34. 34.
    Paglia, P., Chiodoni, C., Rodolfo, M.. and Colombo, M.P., 1996. Murine dendritic cells loaded in vitro with soluble protein prime CTL against tumor antigen in vivo, J. Exp. Med. 183: 317.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Marloes L. H. De Bruijn
    • 1
  • Danita H. Schuurhuis
    • 1
  • Hans Vermeulen
    • 1
  • Karin A. J. de Cock
    • 1
  • Cornelis J. M. Melief
    • 1
  1. 1.Department of Immunohematology and BloodbankUniversity Hospital LeidenLeidenThe Netherlands

Personalised recommendations