Advertisement

Mannose Receptor Mediated Antigen Uptake and Presentation in Human Dendritic Cells

  • Anneke J. Engering
  • Marina Cella
  • Donna M. Fluitsma
  • Elisabeth C. M. Hoefsmit
  • Antonio Lanzavecchia
  • Jean Pieters
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)

Abstract

In an immature state, dendritic cells (DC) can capture antigen via at least two mechanisms. First, DC use macropinocytosis for continuous uptake of large amounts of soluble antigens. Second, they express high levels of mannose receptor that can mediate internalization of glycosylated ligands. We found that dendritic cells can present mannosylated antigen 100 — 1000 fold more efficiently than non-mannosylated antigen. Immunocytochemistry as well as subcellular fractionation demonstrated that the mannose receptor and MHC class II molecules were located in distinct subcellular compartments. These results demonstrate that the mannose receptor endows DC with a high capacity to present glycosylated antigens at very low concentrations.

Keywords

Dendritic Cell Subcellular Fractionation Mannose Receptor Soluble Antigen Human Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lanzavecchia, A. Current Opinion in lmmunol. 8, 348–354 (1996).CrossRefGoogle Scholar
  2. 2.
    Peters, P.J., Neefjes, J.J., Oorschot, V., Ploegh, H.L. and Geuze, H.J. Nature 349, 669–676 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    Pieters, J., Horstmann, H., Bakke, O., Griffiths, G. and Lipp, J. J. Cell Biol. 115, 1213–1223 (1991).CrossRefGoogle Scholar
  4. 4.
    Amigorena, S., Drake, J.R., Webster, P. and Mellman, 1. Nature 369, 113–120 (1994).PubMedCrossRefGoogle Scholar
  5. 5.
    Tulp, A., Verwoerd, D., Dobberstein, B., Ploegh, H.L. and Pieters, J. Nature 369, 120–126 (1994).CrossRefGoogle Scholar
  6. 6.
    West, M.A., Lucocq, J.M. and Watts, C. Nature 369, 147–151 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    Williams, L.A., Egner, W. and Hart, D.N.J. Int. Rev Cytol. 153, 41–103 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    Sallusto, F. and Lanzavecchia, A. J. Exp. Med. 179, 1109–1118 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    Sallusto, F., Cella, M., Danieli, C. and Lanzavecchia, A. J. Exp. Med. 182, 389–400 (1995).CrossRefGoogle Scholar
  10. 10.
    Stahl, P.D. Current Biology 4, 49–52 (1992).Google Scholar
  11. 11.
    Geuze, H.J. and Slot, J.W. Eur J. Cell. Biology 21, 93–100 (1980).Google Scholar
  12. 12.
    Liou, W., Geuze, H.J. and Slot, J.W. Histochem. Cell. Biol. 106, 41–58 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    Geuze, H.J., Slot, J.W., van der Ley, P. and Scheffer, R.C.T. J. Cell. Biol. 89, 653–659 (1981).CrossRefGoogle Scholar
  14. 14.
    Bradford, M. Analyt. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    Koldovsky, O. and Palmieri, M. Biochem. J. 125, 697–701 (1971).PubMedGoogle Scholar
  16. 16.
    Stahl, P.D. Am. J. Respir Cell Mol. Biol. 2, 317–318 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Anneke J. Engering
    • 1
    • 2
  • Marina Cella
    • 1
  • Donna M. Fluitsma
    • 2
  • Elisabeth C. M. Hoefsmit
    • 2
  • Antonio Lanzavecchia
    • 1
  • Jean Pieters
    • 1
  1. 1.Basel Institute for ImmunologyBaselSwitzerland
  2. 2.Department Cell Biology and ImmunologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations