Skip to main content

Generation of Mature Dendritic Cells from Human Blood

An Improved Method with Special Regard to Clinical Applicability

  • Chapter
Book cover Dendritic Cells in Fundamental and Clinical Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 417))

Abstract

Efficient methods to generate large numbers of dendritic cells have been developed in the past five years. Caux et al.1 have introduced the approach to grow dendritic cells from rare CD34+ progenitor cells in (cord) blood using GM-CSF and TNF-α as the critical cytokines. On the other hand, Sallusto et al.2 and Romani et al.3 have established procedures that make use of the more abundant monocytic CD34-negative and CD14+precursors in peripheral blood. GM-CSF and IL-4 were the necessary cytokines. Both approaches have since been widely used, even up to the stage of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caux, C., C. Dezutter-Dambuyant, D. Schmitt, and J. Banchereau. 1992. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature 360: 258–261.

    Article  PubMed  CAS  Google Scholar 

  2. Sallusto, F. and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J. Exp. Med. 179: 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  3. Romani, N., S. Gruner, D. Brang, E. Kämpgen, A. Lenz, B. Trockenbacher, G. Konwalinka, P. O. Fritsch, R. M. Steinman, and G. Schuler. 1994. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180: 83–93.

    Article  PubMed  CAS  Google Scholar 

  4. Romani, N., D. Reider, M. Heuer, S. Ebner, E. Kämpgen, B. Eibl, D. Niederwieser, and G. Schuler. 1996. Generation of mature dendritic cells from human blood: An improved method with special regard to clinical applicability. J. lmmunol. Methods 196: 137–151

    Article  CAS  Google Scholar 

  5. Bender, A., M. Sapp, G. Schuler, R. M. Steinman, and N. Bhardwaj. 1996. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196: 121–135

    Article  PubMed  CAS  Google Scholar 

  6. Zhou, L.-J. and T. F. Tedder. 1995. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 154: 3821–3835.

    PubMed  CAS  Google Scholar 

  7. Sallusto, F., M. Cella, C. Danieli, and A. Lanzavecchia. 1995. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. J. Exp. Med. 182: 389–400.

    Article  PubMed  CAS  Google Scholar 

  8. Kämpgen, E., N. Koch, F. Koch, P. Stöger, C. Heufler, G. Schuler, and N. Romani. 1991. Class II major histocompatibility complex molecules of murine dendritic cells: Synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc. Natl. Acad. Sci. USA 88: 3014–3018.

    Article  PubMed  Google Scholar 

  9. Pure, E., K. Inaba, M. T. Crowley, L. Tardelli, M. D. Witmer-Pack, G. Ruberti, G. Fathman, and R. M. Steinman. 1990. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J. Exp. Med. 172: 1459–1469.

    Article  PubMed  CAS  Google Scholar 

  10. Becker, D., A. B. Reske-Kunz, J. Knop, and K. Reske. 1991. Biochemical properties of MHC class II molecules endogenously synthesized and expressed by mouse Langerhans cells. Eur. J. Immunol. 21: 12–13

    Article  Google Scholar 

  11. Stössel, H., F. Koch, E. Kämpgen, P. Stöger, A. Lenz, C. Heufler, N. Romani, and G. Schuler. 1990. Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells. J. Exp. Med. 172: 1471–1482.

    Article  PubMed  Google Scholar 

  12. Kleijmeer, M. J., V. M. J. Oorschot, and H. J. Geuze. 1994. Human resident Langerhans cells display h lysosomal compartment enriched in MHC class II. J. Invest. Dermatol. 103: 516–523.

    Article  PubMed  CAS  Google Scholar 

  13. Radmayr, C., G. Bock, A. Hobisch, H. Klocker, G. Bartsch, and M. Thurnher. 1995. Dendritic antigen-presenting cells from the peripheral blood of renal-cell-carcinoma patients. Int. J. Cancer 63: 627–632.

    Article  PubMed  CAS  Google Scholar 

  14. Pope, M., M. G. H. Betjes, H. Hirmand, L. Hoffman, and R. M. Steinman. 1995. Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic-T-cell conjugates. J. Invest. Dermatol. 104: 11–17.

    Article  PubMed  CAS  Google Scholar 

  15. Heufler, C., F. Koch, U. Stanzl, G. Topar, M. Wysocka, G. Trinchieri, A. Enk, R. M. Steinman, N. Romani, and G. Schuler. 1996. Interleukin-12 is produced by dendritic cells and mediates T helper I development as well as interferon-gamma production by T helper 1 cells. Eur.1. Immunol. 26: 659–668.

    Article  CAS  Google Scholar 

  16. Macatonia, S. E., N. A. Hosken, M. Litton, P. Vieira, C.-S. Hsieh, J. A. Culpepper, M. Wysocka, G. Trinchieri, K. M. Murphy, and A. O’Garra. 1995. Dendritic cells produce IL-12 and direct the development of Th I cells from naive CD4’ T cells. J. Immunol. 154: 5071–5079.

    PubMed  CAS  Google Scholar 

  17. Koch, F., U. Stanzl, P. Jennewein, K. Janke, C. Heufler, E. Kämpgen, N. Romani, and G. Schuler. 1996. High level IL-12 production by murine dendritic cells: Upregulation via MHC class 11 and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184: 741–746.

    Article  PubMed  CAS  Google Scholar 

  18. Cella, M., D. Scheidegger, K. Palmer-Lehmann, P. Lane, A. Lanzavecchia, and G. Alber. 1996. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184: 747–752.

    Article  PubMed  CAS  Google Scholar 

  19. Shu, U., M. Kiniwa, C. Y. Wu, C. Maliszewski, N. Vezzio, J. Hakimi, M. Gately, and G. Delespesse. 1995. Activated T cells induce interleukin-12 production by monocytes via CD40–CD40ligand interaction. Eur J. Immunol. 25: 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  20. Dummer, W., B. C. Bastian, N. Ernst. C. Schänzle, A. Schwaaf, and E. B. Bröcker. 1996. Interleukin-10 production in malignant melanoma: Preferential detection of IL-10-secreting tumor cells in metastatic lesions. Int. J. Cancer 66: 607–610.

    Article  PubMed  CAS  Google Scholar 

  21. Buelens, C., F. Willems, A. Delvaux, G. Piérard, J. P. Delville, T. Velu, and M. Goldman. 1995. Interleukin10 differentially regulates B7–1 (CD80) and B7–2 (CD86) expression on human peripheral blood dendritic cells. Eur J. Immunol. 25: 2668–2672.

    Article  PubMed  CAS  Google Scholar 

  22. Péguet-Navarro, J., C. Mouton, C. Caux. C. Dalbiez-Gauthier, J. Banchereau, and D. Schmitt. 1994. Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells. Eur J. In, munol. 24: 884–891.

    Google Scholar 

  23. Austyn, J. M. 1996. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183: 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  24. Lukas, M., H. Stössel, L. Hefel, S. Imamura, P. Fritsch, N. T. Sepp, G. Schuler, and N. Romani. 1996. Human cutaneous dendritic cells migrate through dermal lymphatic vessel culture model. J. Invest. Dermatol. 106: 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  25. Hsu, F. J., C. Benike, F. Fagnoni, T. M. Liles, D. Czerwinski, B. Taidi, E. G. Engleman, and R. Levy. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2: 52–58.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou, L. J. and T. F. Tedder. 1996. CD14` blood monocytes can differentiate into functionally mature CD83 dendritic cells. Proc. Natl. Acad. Sci. USA 93: 2588–2592.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schuler, G., Romani, N. (1997). Generation of Mature Dendritic Cells from Human Blood. In: Ricciardi-Castagnoli, P. (eds) Dendritic Cells in Fundamental and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 417. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9966-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9966-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9968-2

  • Online ISBN: 978-1-4757-9966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics