Advertisement

An Approach to Targeted Therapy: Synthesis and Biological Activity of Hydrophobic and Hydrophilic Enkephalin Analogues

  • José M. García-Antón
  • Francesca Reig
  • Gregorio Valencia
Part of the NATO ASI Series book series (NSSA, volume 125)

Abstract

The mechanisms whereby opioid peptides (naturally occuring peptides with opiate — like biological properties) activate processes on their target receptors are still at an early stage of exploration. The aim of receptor research is to purify and isolate receptor glycoproteins or glycolipids in order to further implement the knowledge of the physicochemical aspects involved in the interaction of opioids with their receptor.

Keywords

Opioid Receptor Opioid Peptide Wheat Germ Agglutinin Antinociceptive Activity Soybean Lecithin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, O., 1983, The Construction of a Microprocessor-controlled Film Balance for Precision Measurement of Isotherms and Isobars. The Thin Films, 99: 227.CrossRefGoogle Scholar
  2. Ashwell, G. and Harford, J., 1982, Carbohydrate-specific Receptors of the Liver. Ann. Rev. Biochem., 51: 531.PubMedCrossRefGoogle Scholar
  3. Behnam, B. A. and Deber, C.M., 1984, Evidence for a Folded Conformation of Methionine-and Leucine-Enkephalin in a Membrane Environment, J. Biol. Chem., 259: 14.935.Google Scholar
  4. Dickenson, A. H., 1986, Enkephalins: A new Approach to Pain Relief? Nature, 320: 681.PubMedCrossRefGoogle Scholar
  5. Garcia-Anton, J. M., Sole, N., and Reig, F., 1985, Synthesis of Hydrophobic Enkephalin amides, Int. J. Peptide Protein Res., 26: 591.Google Scholar
  6. Gioannini, T. L., Howard, A., Hiller, J. M. and Simon, E. J., 1984, Affinity Chromatography of Solubilized Opioid Binding Sites using CH-Sepharose modified with a new Naltrexone Derivative, Biochem. Biophys. Res. Commun., 119: 624.PubMedCrossRefGoogle Scholar
  7. Holaday, J. W., Ruvio, B. A., Robles, L. E., Johnson, C. E., and D’Amato, R. J., 1982, M 154,129, A Putative delta Antagonist reverses Endotoxic Shock Without altering Morphine Analgesia, Life Sci., 31: 2209.PubMedCrossRefGoogle Scholar
  8. Phillips, M. C. and Chapman, D., 1968, Monolayer Characteristics of Saturated 1,2-diacyl Phosphatidylcholines (lecithins) and Phosphatidylethanolamines of the Air-water Interphase, Biochim. Biophys. Acta, 163: 301.PubMedCrossRefGoogle Scholar
  9. Rodriguez, R. E., Sole, N., Reig, F., 1986, Analgesic Effects of (D-Met2-Pro5-NH2) — Enkephalin Analogues in Rats, Life Sci., (in press).Google Scholar
  10. Sly, W. S. and Fisher, H. D., 1982, The Phosphomannosyl Recognition System for Intracellular Pools of Receptor and their Roles in Receptor Recycling, J. Cellular Biochim., 18: 67.CrossRefGoogle Scholar
  11. Zajac, J. M., and Roques, B. P., 1985, Differences in Binding Properties of mμ and delta Opioid Receptor Subtypes from Rat Brain: Kinetic Analysis and Effects of Ions and Nucleotides, J. of Neurochem., 44: 1605.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • José M. García-Antón
    • 1
  • Francesca Reig
    • 1
  • Gregorio Valencia
    • 1
  1. 1.Laboratory of PeptidesBiological Organic Chemistry Department C.S.I.C.BarcelonaSpain

Personalised recommendations