Advertisement

Yield Improvement Through X-RAY Lithography

  • J. Mauer
  • D. Seeger
  • R. DellaGuardia

Abstract

As lithographic dimensions progress through sub-micron sizes, the effect of contamination becomes more severe. The occurance of small particulates rises rapidly as their size decreases, not only because of the larger number of small airborne particulates but also because of the particulates from tools and semiconductor materials. Even with better clean rooms, this larger defect density can cause drastic yield reductions unless specific measures are taken to reduce its impact.

Keywords

Defect Image Partial Transmission National Synchrotron Light Source Random Defect Defect Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Warlaumont, X-Ray Lithography: on the Path to Manufacturing, J.Vac.Sci.Technol.B, to be published.Google Scholar
  2. 2.
    R. Viswanathan, R.E. Acosta, D. Seeger, H. Voelker, A. Wilson, I. Babich, J. Maldonado, J. Warlaumont, O. Vladimirsky, F. Hohn, Fully Scaled 0.5 μm Metal-oxide Semiconductor Circuits By Synchrotron X-ray Lithography: Mask Fabrication and Characterization, J.Vac.Sci.Technol.B, 6(6) 2196 (1988).CrossRefGoogle Scholar
  3. 3.
    G. Wardly, R. Feder, D. Hofer, E. Castellani, R. Scott, J. Topalian, Circuits Manufacturing, 18(1), 30 (1978).Google Scholar
  4. 4.
    H. Oertel, H. Betz, A. Heuberger, Application of the Simulator “XMAS” on Specific Problems in Sub-half-micron Lithography, Microelectronic Engineering 3, 387 (1985).CrossRefGoogle Scholar
  5. 5.
    A. Kluwe, K.H. Müller, H. Betz, H. Oertel, Defects in X-ray Masks: Detection and Printabrlity, J.Vac.Sci.Tech.B, 5(1), 262, (1987).CrossRefGoogle Scholar
  6. 6.
    R.A. DellaGuardia, D.E. Seeger, J.L. Mauer, X-ray Transmission Through Low Atomic Number Particles, Microelectronics Engineering 9, 139 (1988).CrossRefGoogle Scholar
  7. 7.
    A.V. Ferris-Prabhu, Role of Defect Size Distribution in Yield Modeling, IEEE Trans.Elec.Dev., ED-32(9), 1727, (1985).CrossRefGoogle Scholar
  8. 8.
    C.H. Stapper, Modeling of Integrated Circuit Defect Sensitivities, IBM J. Res. Develop., 27(6), 549, (1983).CrossRefGoogle Scholar
  9. 9.
    C.H. Stapper, F.M. Armstrong, K. Saji, Integrated Circuit Yield Statistics, Proc.IEEE, 71(4), 453, (1983).CrossRefGoogle Scholar
  10. 10.
    C.H. Stapper, P.P. Castrucci, R.A. Maeder, W.E. Rowe, R.A. Verheist, Evolution and Accomplishments of VLSI Yield Management, IBM J.Res.Develop., 26(5), 532, (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. Mauer
    • 1
  • D. Seeger
    • 1
  • R. DellaGuardia
    • 1
  1. 1.IBM Research DivisionThomas J. Watson Research Ctr.Yorktown HeightsUSA

Personalised recommendations