Davydov Ansatz and Proper Solutions of Schrödinger Equation for Fröhlich Hamiltonian

  • M. Škrinjar
  • D. Kapor
  • S. Stojanovic
Part of the NATO ASI Series book series (NSSB, volume 243)


Theory of Davydov solitons in molecular systems is rather well established nowadays1, but certain problems dealing with the quantum-mechanical foundations of the theory still remain, especially those concerning the applicability of various equations of motion, both quantum and classical.


Trial Function Schrodinger Equation Proper Solution Heisenberg Equation Quantum Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S. Davydov, Solitons in Molecular Systems (Solitony v molekulyarnyh sistemah), Naukova dumka, Kiev (1988) (in Russian).Google Scholar
  2. 2.
    H. Fröhlich, Electrons in Lattice Fields, Adv. Phys. 3, 325 (1954).ADSCrossRefGoogle Scholar
  3. 3.
    A. Messiah, Quantum mechanics, Wiley, New York (1962).MATHGoogle Scholar
  4. 4.
    A.S. Davydov, Dvizhenie solitona v odnomernoi molekulyarnoi reshetke s uchetom teplovih kolebanii, Zh. Eksp. Teor. Fiz. 78, 789 (1980) Sov. phys. — JETP 51, 397 (1980)].ADSGoogle Scholar
  5. 5.a)
    D.W. Brown, K. Lindenberg and B.J. West, Applicability of Hamilton’s equations in the quantum soliton problem, Phys. Rev. B 33, 4104 (1986).MathSciNetADSGoogle Scholar
  6. b).
    D.W. Brown, B.J. West and K. Lindenberg, Davydov solitons: New results at variance with standard derivations, Phys. Rev. B 33, 4110 (1986).MathSciNetADSGoogle Scholar
  7. 6.
    W.C. Kerr and P.S. Lomdahl, Quantum-mechanical derivation of the equations of motion for Davydov solitons, Phys. Rev. 35, 3629 (1987)ADSCrossRefGoogle Scholar
  8. 7.
    D.W. Brown, Balancing the Schrödinger equation with Davydov Ansätze, Phys. Rev. A 37, 5010 (1988).MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    M.J. Škrinjar, D.V. Kapor and S. Stojanovic, Classical and quantum approach to Davydov’s soliton theory, Phys Rev. B 38, 6402 (1988).CrossRefGoogle Scholar
  10. 9.
    Q. Zhang, V. Romera-Rochin and R. Silbey, Variational approach to Davydov soliton, Phys. Rev, B38, 6409 (1988).ADSGoogle Scholar
  11. 10.
    J.R. Klauder, The Action Option and a Feynman Quantization of Spinor Fields in Terms of Ordinary C-Numbers, Ann. of Phys. 11, 123 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 11.
    L.R. Mead and N. Papanicolaou, Holstein-Primakoff theory for many-body systems, Phys. Rev. B 28, 1633 (1983).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Škrinjar
    • 1
  • D. Kapor
    • 1
  • S. Stojanovic
    • 1
  1. 1.Institute of Physics, Faculty of SciencesUniversity of Novi SadNovi SadYugoslavia

Personalised recommendations