Davydov’s Soliton and Fröhlich’s Condensation: Is There a Connection?

  • J. A. Tuszyński
Part of the NATO ASI Series book series (NSSB, volume 243)


In this paper we present the physicist’s view of a biological cell as envisaged by Fröhlich, from the point of view of membrane organization, and by Davydov, from the energy and particle transport viewpoint. An investigation into the possible interrelationships between these two approaches is given which involves formal similarities and functional dependences. In the former case effective Hamiltonians for the two models are derived and demonstrated to lead to the creation of coherent structures. In the latter case, nonequilibrium considerations result in a scenario where the two phenomena may be mutually functionally dependent. It is also outlined how Fröhlich’s dipolar mode coherence could be seen as a Davydov soliton in momentum space.


Head Group Peptide Chain Schrodinger Equation Bose Condensation Coagulation Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Chance, P. Mueller, D. De Vault and L. Power, Phys. Today 80:32 (1980).CrossRefGoogle Scholar
  2. 2.
    D.A. Eisner and S.C. Wray, Contemp. Phys. 26:3 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    H. Fröhlich, Adv. Electron. Electron. Phys. 53:85 (1980).CrossRefGoogle Scholar
  4. 4.
    F. Fröhlich, IEEE Trans., MIT 26:613 (1978).Google Scholar
  5. 5.
    A.S. Davydov, “Solitons in Molecular Systems,” D. Reidel, Dordrecht (1985).MATHCrossRefGoogle Scholar
  6. 6.
    J.A. Tuszyński, Phys. Lett. A107:225 (1985).ADSGoogle Scholar
  7. 7.
    H. Fröhlich, Phys. Lett. A39:153 (1972).ADSGoogle Scholar
  8. 8.
    Y.H. Ichikawa, N. Yajima and K. Takano, Prog. Theor. Phys. 55:1723 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    A.C. Scott, P.S. Lomdahl and J.C. Eilbeck, Chem. Phys. Lett. 113:29 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    S.N. Pnevmatikos, Solitons in nonlinear atomic chains, in: “Singularities and Dynamical Systems,” S.N. Pnevmatikos, ed., Elsevier Science, Amsterdam (1985).Google Scholar
  11. 11.
    R. Paul, Phys. Lett. A96:263 (1983).ADSGoogle Scholar
  12. 12.
    T.M. Wu and S. Austin, Phys. Lett. 64A:151 (1977).ADSGoogle Scholar
  13. 13.
    J.A. Tuszyński, R. Paul, R. Chatterjee and S.R. Sreenivasan, 30:2666 (1984).Google Scholar
  14. 14.
    J.A. Tuszyński, Int. J. Quant. Chem. 29:379 (1986).CrossRefGoogle Scholar
  15. 15.
    J.A. Tuszyński and J.M. Dixon (1989), submitted to Phys. Lett. A. Google Scholar
  16. 16.
    R. Jackiw, Rev. Mod. Phys. 49:681 (1977).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    H. Bolterauer and J.A. Tuszyński (1989), submitted to J. Biol. Phys. Google Scholar
  18. 18.
    E. Del Giudice, S. Doglia, M. Milani and G. Vitiello, Nucl. Phys. B251:375 (1985).Google Scholar
  19. 19.
    E. Del Giudice, S. Doglia, M. Milani and G. Vitiello, Nucl. Phys. B275:185 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    J.B. Hasted, H.M. Millany and D. Rose, J. Chem. Soc. Farraday Trans. 77:2289 (1981).CrossRefGoogle Scholar
  21. 21.
    J.A. Tuszyński, J. Biol. Phys. (1989), in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. A. Tuszyński
    • 1
  1. 1.Department of PhysicsThe University of AlbertaEdmontonCanada

Personalised recommendations