Advertisement

Search for Remote Transfer of Vibrational Energy in Proteins

  • R. S. Knox
  • S. Maiti
  • P. Wu
Part of the NATO ASI Series book series (NSSB, volume 243)

Abstract

We describe the preliminary stages of an experiment designed to search for long-range transfer of vibrational energy. The experiment, motivated by theoretical interest in solitons and other modes of coherent transport, is of the pump-probe variety and is intended as a means of measuring the time of flight of a vibrational packet, whether or not it has dispersion. While no results can yet be reported, this note highlights some of the practical and fundamental problems associated with the measurement and the application of the principle of coherent transport to real biological systems.

Keywords

Pump Pulse Vibrational Energy Alpha Helix Real Biological System Coherent Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Koshland, Jr., and E. Neet. Ann. Rev. Biochem. 37, 359 (1968)CrossRefGoogle Scholar
  2. A. L. Lehninger, Biochemistry: The Molecular Basis of Cell Structure and Function (Worth Publishers, New York, NY, 2nd ed., 1975, pp. 222–230Google Scholar
  3. 2.
    B. S. Green, Y. Ashani, and D. Chipman, eds. Chemical Approaches to Understanding Enzyme Catalysis: Biomimetic Chemistry and Transition-State Analogs (Elsevier, Amsterdam, 1982)Google Scholar
  4. 3.
    A. S. Davydov and N. I. Kislukha, Phys. Stat. Sol. (b) 59, 465 (1973).ADSCrossRefGoogle Scholar
  5. A. S. Davydov, J. Theoret. Biol. 38, 559 (1973)CrossRefGoogle Scholar
  6. 4.
    J. M. Hyman, D. W. McLaughlin, and A. C. Scott, Physica 30, 23 (1981); A.C. Scott, Phys. Rev. A26, 578 (1982)Google Scholar
  7. 5.
    J. P. Cottingham and J. W. Schweitzer, Phys. Rev. Lett. 62, 1792 (1989)ADSCrossRefGoogle Scholar
  8. 6.
    P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett. 55, 1235 (1985)ADSCrossRefGoogle Scholar
  9. 7.
    A. F. Lawrence, J. C. McDaniel, D. B. Chang, and R. R. Birge, Phys. Rev. Lett. 55, 1235 (1985)ADSCrossRefGoogle Scholar
  10. 8.
    L. Cruzeiro et al., Phys. Rev. A33, 4110 (1986)Google Scholar
  11. 9.
    A. S. Davydov, Sov. Phys. JETP 51, 397 (1980)ADSGoogle Scholar
  12. 10.
    S. Yomosa, J. Phys. Soc. Japan 53, 3692 (1984); Phys. Rev. A32, 1752 (1985)ADSCrossRefGoogle Scholar
  13. 11.
    D. Hochstrasser, F. G. Mertens. and H. Buettner, Phys. Rev. A40, 2602 (1989)ADSGoogle Scholar
  14. 12.
    See the summary by T. J. Kosic, E. L. Chronister, R. E. Cline, Jr., J. R. Hill, and D. D. Dlott, in K. B. Eisenthal et al., eds., Picosecond Phenomena III (Springer-Verlag, N. Y., 1982), pp. 452-455Google Scholar
  15. 13.
    A. C. Scott, Physica Scripta 25, 651 (1983)ADSCrossRefGoogle Scholar
  16. 14.
    J. W. Petrich and J.-L. Martin, Chem. Phys. 131, 31 (1989)ADSCrossRefGoogle Scholar
  17. 15.
    N. H. Gottfried, A. Selmeier, and W. Kaiser, Chem. Phys. Lett. 111, 326 (1984)ADSCrossRefGoogle Scholar
  18. 16.
    I. Nakada, J. Phys. Soc. Japan 20, 346 (1965)ADSCrossRefGoogle Scholar
  19. 17.
    L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, Chem. Phys. 131, 81 (1989)CrossRefGoogle Scholar
  20. 18.(a)
    T. H. Schulte and V. T. Marchesi, Biochemistry 18, 275 (1979); (b) J. P. Segrest et al., Arch. Biochem. Biophys. 155, 167 (1973)CrossRefGoogle Scholar
  21. 19.
    M. Tomita and V. T. Marchesi, Proc. Natl. Acad. Sci. (US) 72, 2964 (1975)ADSCrossRefGoogle Scholar
  22. 20.
    J. P. Segrest, R. L. Jackson, and V. T. Marchesi, Biochim. Biophys. Res. Comm. 49, 964 (1972)CrossRefGoogle Scholar
  23. 21.
    V.T. Marchesi, quoted in L. Stryer, Biochemistry (W. H. Freeman, San Francisco, third edition, 1988), p. 303Google Scholar
  24. 22.
    See, e.g., D. Kimmelman et al., Biochemistry 18, 5874 (1979)CrossRefGoogle Scholar
  25. 23.
    H. D. Bettman, J. H. Weiner, and B. D. Sykes, Biophys. J. 37, 243 (1982)CrossRefGoogle Scholar
  26. 24.
    V. F. Asbeck et al., Hoppe-Seyler’s Z. Physiol. Chem. 350, 1047 (1969)CrossRefGoogle Scholar
  27. 25.
    Y. Nakashima and W. Königsberg, J. Mol. Biol. 88, 598 (1974)CrossRefGoogle Scholar
  28. 26.
    R. Knippers and H. Hoffman-Berling, J. Mol. Biol. 21. 281 (1966)CrossRefGoogle Scholar
  29. 27.
    D. H. Rich and J. Singh, in The Peptides. Analysis, Synthesis, and Biology (E. Ross and J. Meienhofer, eds., Academic Press, N.Y., 1979), vol. 1, p. 242Google Scholar
  30. 28.
    R. S. Knox, in Encyclopedia of Plant Physiology (L. A. Stae-helin and C. J. Arntzen, eds., Springer Verlag, Berlin and Heidelberg, 1986), new series Volume 19, Photosynthesis III, p. 286, esp. section 2.2Google Scholar
  31. 29.
    See, e.g., S. J. Strickler and R. A. Berg, J. Chem. Phys. 37, 814 (1962)ADSCrossRefGoogle Scholar
  32. 30.
    R. H. Pierson, A. N. Fletcher, and E. St. Clair Gantz, Analyt. Chem. 28, 1218 (1956)CrossRefGoogle Scholar
  33. 31.
    R. M. Hailey, H. M. Barnes, C. Woodward, and J. W. Robinson, Anal. Chim. Acta 56, 161 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. S. Knox
    • 1
  • S. Maiti
    • 1
  • P. Wu
    • 2
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  2. 2.Department of BiophysicsUniversity of RochesterRochesterUSA

Personalised recommendations