Advertisement

The Temperature Dependence of Exciton-Phonon Coupling in the Context of Davydov’s Model; The Dynamic Damping of Soliton

  • M. Satarić
  • Z. Ivić
  • R. Žakula
Part of the NATO ASI Series book series (NSSB, volume 243)

Abstract

The temperature-dependent behaviour of localized excitons in a linear molecular α-helix chain model is investigated. After transforming Davydov’s original Hamiltonian for the α-helix soliton to include Bogoliubov’s variational theorem, the temperature dependence of the “threshold” of solitonic solution is obtained. We also investigated the damping of a soliton under the influence of the thermal bath. The approach is based on the consequent microscopic treatment in context of quantum Langevin equation.

Keywords

Free Energy Schrodinger Equation Thermal Bath Model Hamiltonian Localize Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davydov A.S., J. Theor. Biol. 38 (1973) 359CrossRefGoogle Scholar
  2. 2.
    Balanovski E. and Beaconsfield P., Phys. Rev. A 32 (1985) 3059ADSCrossRefGoogle Scholar
  3. 3.
    Lomdahl P.S., MacNeil L., Scott A.C., Stoneham M.E. and Webb S.J., Phys. Lett. A 92 (1982) 207ADSCrossRefGoogle Scholar
  4. 4.
    Davydov A.S., Sov. Phys. JETP. 78 (1980) 789Google Scholar
  5. 5.
    Sataric M., Vujičić G. and žakula R., Il Nuovo Cimento 63B (1981) 709ADSGoogle Scholar
  6. 6.
    Lomdahl P.S. and Kerr W.C., Phys. Rev. Lett. 55 (1985) 1235ADSCrossRefGoogle Scholar
  7. 7.
    Lawrence A.F., McDaniel J.C., Chang D.B. and Pierce B.M., Phys. Rev. A 33 (1986) 1188ADSCrossRefGoogle Scholar
  8. 8.
    Bolterauer H., Proceeding of the MIDIT 1986, workshopGoogle Scholar
  9. 9.
    Alexander D.M., Phys. Rev. Lett. 54, No 2 (1985) 138ADSCrossRefGoogle Scholar
  10. 10.
    Bolterauer H. and Opper M. “The quantum lifetime of the Davydov soliton”, subjected for publication in Physica ScriptaGoogle Scholar
  11. 11.
    Brown D.W., Lindenberg K. and West B.J., Phys. Rev. A, 33 (1986) 4104MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Brown D.W., West B.J. and Lindenberg K., Phys. Rev. A, 33 (1986) 4110MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Pekar S.I., Sov. Phys. JETP 16 (1946) 341Google Scholar
  14. 14.
    Alexander D.M., Phys. Rev. Lett. 54, No2 (1985) 138ADSCrossRefGoogle Scholar
  15. 15.
    Yarkony D. and Silbey R., J. Chem. Phys. 65 (1976) 1042ADSGoogle Scholar
  16. 16.
    MacNeil L. and Scott A.C., Physica Scripta 29 (1984) 284ADSCrossRefGoogle Scholar
  17. 17.
    Careri G., Buontempo V., Karta F., Gratton E. and Scott A.C., Phys. Rev. Lett. 51 (1983) 304ADSCrossRefGoogle Scholar
  18. 18.
    Eilbeck J., Lomdahl P.S. and Scott A.C., Phys. Rev. B 30 (1984) 4703ADSCrossRefGoogle Scholar
  19. 19.
    Scott A.C., Phys. Lett. A 86 (1981) 60ADSCrossRefGoogle Scholar
  20. 20.
    Sataric M., Ivic Z., Shemsedini Z. and žakula R., Journal of Molecular Electronics 4 (1988) 223Google Scholar
  21. 21.
    Valasek K., Zubarev D.N. and Kuzemski A.L., Sov. Phys. TMF 5 (1970) 281Google Scholar
  22. 22.
    Shibata F. and Hashitsume N., J. Phys. Soc. Japan 44 (1978) 1435ADSCrossRefGoogle Scholar
  23. 23.
    Ivić Z., The Doctoral Thesis “The Dynamics and Transport Properties of Solitons in One-Dimensional Molecular Crystals in Contact with Thermal Bath”, Belgrade (1988)Google Scholar
  24. 24.
    Satarić M., Ivić Z. and žakula R., Physica Scripta 34 (1986) 283.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Satarić
    • 1
  • Z. Ivić
    • 2
  • R. Žakula
    • 2
  1. 1.Novi SadYugoslavia
  2. 2.Laboratory of Theoretical PhysicsInstitute of Nuclear Sciences “Boris Kidrič”BelgradeYugoslavia

Personalised recommendations