Advertisement

Oxygen Activation and Transfer

  • Paul R. Ortiz de Montellano

Abstract

The cytochrome P-450-catalyzed insertion of an oxygen into a substrate culminates a process that reduces molecular oxygen to a species equivalent, in terms of formal electron count and reactivity, to an oxygen atom. The catalytic sequence for microsomal cytochrome P-450 enzymes, which has been reviewed previously,1–4 involves the following steps (Fig. 1): (1) binding of a substrate, (2) reduction of the two flavin prosthetic groups of cytochrome P-450 reductase by NADPH, (3) transfer of one of the two electrons thus made available to cytochrome P-450, (4) binding of molecular oxygen to give a ferrous cytochrome P-450—dioxygen complex, (5) transfer of a second electron from cytochrome P-450 reductase, or of an electron from cytochrome b 5, to the complex, (6) cleavage of the oxygen-oxygen bond with concurrent incorporation of the distal oxygen atom into a molecule of water, (7) transfer of the second oxygen atom to the substrate, and (8) dissociation of the product. The catalytic cycle for mitochondrial cytochrome P-450 enzymes differs in that the transfer of electrons from cytochrome P-450 reductase to the hemeprotein is mediated by adrenodoxin, an iron—sulfur protein (see Chapter 12). The steps in the catalytic sequence in which bonds to oxygen are made or broken are addressed in this chapter. The substrate-binding step is discussed in Chapter 3, however, and the electron transfer steps in Chapters 4, 5, 11, and 12.

Keywords

Oxygen Activation Isotope Effect Cumene Hydroperoxide Thiolate Ligand Estrogen Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedGoogle Scholar
  2. 2.
    Griffin, B. W., Peterson, J. A., and Estabrook, R. W., 1979, Cytochrome P-450: Biophysical properties and catalytic function, in: The Porphyrins, Volume 7 (D. Dolphin, ed.), Academic Press, New York, pp. 333–375.Google Scholar
  3. 3.
    Sato, R., and Omura, T. (eds.), 1978, Cytochrome P-450, Academic Press, New York.Google Scholar
  4. 4.
    Lambeth, J. D., Seybert, D. W., Lancaster, J. R., Salerno, J. C., and Kamin, H., 1982, Steroidogenic electron transport in adrenal cortex mitochondria, Mol. Cell. Pharmacol. 45: 13–31.Google Scholar
  5. 5.
    Omura, T., and Sato, R., 1984, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370–2378.Google Scholar
  6. 6.
    Estabrook, R. W., Peterson, J., Baron, J., and Hildebrandt, A., 1972, The spectrophotometric measurement of turbid suspensions of cytochromes associated with drug metabolism, in: Methods in Pharmacology, Volume 2 ( C. F. Chignell, ed.), AppletonCentury—Crofts, New York, pp. 303–350.Google Scholar
  7. 7.
    McLane, K. E., Fisher, J., and Ramakrishnan, K., 1983, Reductive drug metabolism, Drug Metab. Rev. 14: 741–799.Google Scholar
  8. 8.
    Bonfils, C., Debey, P., and Maurel, P., 1979, Highly purified microsomal cytochrome P-450: The oxyferro intermediate stabilized at low temperature, Biochem. Biophys. Res. Commun. 88: 1301–1307.PubMedGoogle Scholar
  9. 9.
    Estabrook, R. W., Hildebrandt, A. G., Baron, J., Netter, K. J., and Leibman, K. C., 1971, New spectral intermediate associated with cytochrome P-450 function in liver microsomes, Biochem. Biophys. Res. Commun. 42: 132–139.PubMedGoogle Scholar
  10. 10.
    Peterson, J. A., Ishimura, Y., and Griffin, B. W., 1972, Pseudomonas putida cytochrome P-450: Characterization of an oxygenated form of the hemoprotein, Arch. Biochem. Biophys. 149: 197–208.Google Scholar
  11. 11.
    Larroque, C., and Van Lier, J. E., 1980, The subzero temperature stabilized oxyferro complex of purified cytochrome P-450scc, FEBS Lett. 115: 175–177.PubMedGoogle Scholar
  12. 12.
    Tuckey, R. C., and Kamin, H., 1982, The oxyferro complex of adrenal cytochrome P-450sce: Effect of cholesterol and intermediates on its stability and optical characteristics, J. Biol. Chem. 257: 9309–9314.PubMedGoogle Scholar
  13. 13.
    Guengerich, F. P., Ballou, D. P., and Coon, M. J., 1976, Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 70: 951–956.PubMedGoogle Scholar
  14. 14.
    Oprian, D. D., Gorsky, L. D., and Coon, M. J., 1983, Properties of the oxygenated form of liver microsomal cytochrome P-450, J. Biol. Chem. 258: 8684–8691.PubMedGoogle Scholar
  15. 15.
    Begard, E., Debey, P., and Douzou, P., 1977, Sub-zero temperature studies of microsomal cytochrome P-450: Interaction of Fe’ with oxygen, FEBS Leu. 75: 52–54.Google Scholar
  16. 16.
    Anderson, K. K., Debey, P., and Balny, C., 1979, Subzero temperature studies of microsomal cytochrome P-450: 0-dealkylation of 7-ethoxycoumarin coupled to single. turnover, FEBS Lett. 102: 117–120.Google Scholar
  17. 17.
    Sharrock, M., Munck, E., Debrunner, P. G., Marshall, V., Lipscomb, J. D., and Gunsalus, I. C., 1973, Mossbauer studies of cytochrome P-450cam, Biochemistry 12: 258–265.PubMedGoogle Scholar
  18. 18.
    Sharrock, M., Debrunner, P. G., Schulz, C., Lipscomb, J. D., Marshall, V., and Gunsalus, I. C., 1976, Cytochrome P-450cam and its complexes: Mossbauer parameters of the heme iron, Biochim. Biophys. Acta 420: 8–26.Google Scholar
  19. 19.
    Bonfils, C., Balny, C., and Maurel, P., 1981, Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver cytochrome P-450 LM2, J. Biol. Chem. 256: 9457–9465.PubMedGoogle Scholar
  20. 20.
    Noshiro, M., Ullrich, V., and Omura, T., 1981, Cytochrome bs as electron donor for oxy-cytochrome P-450, Eur. J. Biochem. 116: 521–526.PubMedGoogle Scholar
  21. 21.
    Werringloer, J., and Kawano, S., 1980. The control of the cyclic function of liver microsomal cytochrome P-450: “Counterpoise”-regulation of the electron transfer reactions required for the activation of molecular oxygen, in: Biochemistry, Biophysics and Regulation of Cytochrome P-450 ( J. A. Gustafsson, D. Carlstedt-Duke, A. Mode, and J. Rafter, eds.), Elsevier/North-Holland, Amsterdam, pp. 359–362.Google Scholar
  22. 22.
    Gillette, J. R., Brodie, B. B., and LaDu, B. N., 1957, The oxidation of drugs by liver microsomes: On the role of TPNH and oxygen, J. Pharmacol. Exp. Ther. 119: 53 2540.Google Scholar
  23. 23.
    Thurman, R. G., Ley, H. G., and Scholz, R., 1972, Hepatic microsomal ethanol oxidation: Hydrogen peroxide formation and the role of catalase, Eur. J. Biochem. 25: 420–430.PubMedGoogle Scholar
  24. 24.
    Hildebrandt, A. G., and Roots, J., 1975, Reduced nicotinamide adenine dinucleotide phosphate (NADPH) dependent formation and breakdown of hydrogen peroxide during mixed function reactions in liver microsomes, Arch. Biochem. Biophys. 171: 385–397.Google Scholar
  25. 25.
    Werringloer, J., 1977, The formation of hydrogen peroxide during hepatic microsomal • electron transport reactions, in: Microsomes and Drug Oxidations ( V. Ullrich, J. Roots, A. G. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 261–268.Google Scholar
  26. 26.
    Nordblom, G. D., and Coon, M. J., 1977, Hydrogen peroxide formation and stoichiometry of hydroxylation reactions catalyzed by highly purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys. 180: 343–347.PubMedGoogle Scholar
  27. 27.
    Grover, T. A., and Piette, L. H., 1981, Influence of flavin addition and removal on the formation of superoxide by NADPH-cytochrome P-450 reductase: A spin trap study, Arch. Biochem. Biophys. 212: 105–114.PubMedGoogle Scholar
  28. 28.
    Bosterling, B., and Trudell, J. R., 1981, Spin trap evidence of superoxide radical anions by purified NADPH-cytochrome P-450 reductase, Biochem. Biophys. Res. Commun. 98: 569–575.PubMedGoogle Scholar
  29. 29.
    Ingelman-Sundberg, M., and Johansson, I., 1980, Cytochrome b5 as electron donor to rabbit liver cytochrome P-450LM2 in reconstituted phospholipid vesicles, Biochem. Biophys. Res. Commun. 97: 582–589.PubMedGoogle Scholar
  30. 30.
    Bast, A., Savenije-Chapel, E. M., and Kroes, B. H., 1984, Inhibition of mono-oxygenase and oxidase activity of rat hepatic cytochrome P-450 by Hs-receptor blockers, Xenobiotica 14: 399–408.PubMedGoogle Scholar
  31. 31.
    Jeffery, E. H., and Mannering, G. J., 1983, Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine: Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats, Mol. Pharmacol. 23: 748–757.PubMedGoogle Scholar
  32. 32.
    Ingelman-Sundberg, M., and Johansson, I., 1984, Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450, J. Biol. Chem. 259: 6447–6458.PubMedGoogle Scholar
  33. 33.
    Debey, P., and Balny, C., 1973, Production of superoxide ions in rat liver microsomes, Biochimie 55: 329–332.PubMedGoogle Scholar
  34. 34.
    Bartoli, G. M., Galeotti, T., Palombini, G., Parisi, G., and Azzi, A., 1977, Different contributions of rat liver microsomal pigments in the formation of superoxide anions and hydrogen peroxide during development, Arch. Biochem. Biophys. 184: 276–281.PubMedGoogle Scholar
  35. 35.
    Auclair, C., De Prost, D., and Hakim, J., 1978, Superoxide anion production by liver microsomes from phenobarbital treated rat, Biochem. Pharmacol. 27: 355–358.PubMedGoogle Scholar
  36. 36.
    Kuthan, H., Ullrich, V., and Estabrook, R. W., 1982, A quantitative test for superoxide radicals produced in biological systems, Biochem. J. 203: 551–558.PubMedGoogle Scholar
  37. 37.
    Kuthan, H., and Ullrich V., 1982, Oxidase and oxygenase function of the microsomal cytochrome P-450 monooxygenase system, Eur. J. Biochem. 126: 583–588.PubMedGoogle Scholar
  38. 38.
    Kuthan, H., Tsuji, H., Graf, H., Ullrich, V., Werringloer, J., and Estabrook, R. W., 1978, Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system, FEBS Lett. 91: 343–345.PubMedGoogle Scholar
  39. 39.
    Zhukov, A. A., and Archakov, A. I., 1982, Complete stoichiometry of free NADPH oxidation in liver microsomes, Biochem. Biophys. Res. Commun. 109: 813–818.PubMedGoogle Scholar
  40. 40.
    Sligar, S. G., Lipscomb, J. D., Debrunner, P. G., and Gunsalus, I. C., 1974, Superoxide anion production by the autoxidation of cytochrome P-450cam, Biochem. Biophys. Res. Commun. 61: 290–296.PubMedGoogle Scholar
  41. 41.
    Heinemeyer, G., Nigam, S., and Hildebrandt, A. G., 1980, Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat, and rabbit, Naunyn-Schmiedebergs Arch. Pharmacol. 314: 201–210.PubMedGoogle Scholar
  42. 42.
    Hildebrandt, A. G., Heinemeyer, G., and Roots, I., 1982, Stoichiometric cooperation of NADPH and hexobarbital in hepatic microsomes during the catalysis of hydrogen peroxide formation, Arch. Biochem. Biophys. 216: 455–465.PubMedGoogle Scholar
  43. 43.
    Pompon, D., and Coon, M. J., 1984, On the mechanism of action of cytochrome P450: Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5, J. Biol. Chem. 259:15377-15385.Google Scholar
  44. 44.
    Wallace, W. J., and Caughey, W. S., 1975, Mechanism for the autoxidation of hemoglobin by phenols, nitrite, and “oxidant” drugs: Peroxide formation by one electron donation of bound dioxygen, Biochem. Biophys. Res. Commun. 62: 561–567.PubMedGoogle Scholar
  45. 45.
    Wallace, W. J., Houtchens, R. A., Maxwell, J. C., and Caughey, W. S., 1982, Mechanism of autooxidation for hemoglobins and myoglobins: Promotion of superoxide production by protons and anions, J. Biol. Chem. 257: 4966–4977.PubMedGoogle Scholar
  46. 46.
    Satoh, Y., and Shikama, K., 1981, Autoxidation of myoglobin: A nucleophilic displacement mechanism, J. Biol. Chem. 256: 10272–10275.PubMedGoogle Scholar
  47. 47.
    Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J., and Gunsalus, I. C., 1976, Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam, J. Biol. Chem. 251: 1116–1124.PubMedGoogle Scholar
  48. 48.
    Sligar, S. G., Shastry, B. S., and Gunsalus, I. C., 1976, Oxygen reactions of the P450 protein, in: Microsomes and Drug Oxidations ( V. Ullrich, A. Hildebrandt, I. Roots, and R. W. Estabrook, eds.), Pergamon Press, Elmsford, N.Y., pp. 202–208.Google Scholar
  49. 49.
    Estabrook, R. W., Kawano, S., Werringloer, J., Kuthan, H., Tsuji, H., Graf, H., and Ullrich, V., 1979, Oxycytochrome P-450: Its breakdown to superoxide for the formation of hydrogen peroxide Acta Biol. Med. Ger. 38: 423–434.PubMedGoogle Scholar
  50. 50.
    Shikama, K., 1984, A controversy on the mechanism of autoxidation of oxymyoglobin and oxyhaemoglobin: Oxidation, dissociation, or displacement?, Biochem. J. 223: 279280.Google Scholar
  51. 51.
    Dolphin, D., Forman, A., Borg, D. C., Fajer, J., and Felton, R. H., 1971, Compounds I of catalane and horse radish peroxidase: it-cation radicals, Proc. Natl. Acad. Sci. USA 68: 614–618.PubMedGoogle Scholar
  52. 52.
    Morishima, I., Takamuki, Y., and Shiro, Y., 1984, Nuclear magnetic resonance studies of metalloporphyrin 7r-cation radicals as models for compound I of peroxidases, J. Am. Chem. Soc. 106: 7666–7672.Google Scholar
  53. 53.
    Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981, Electron-nuclear double resonance of horseradish peroxidase compound I, J. Biol. Chem. 256: 2118 2121.Google Scholar
  54. 54.
    La Mar, G. N., de Ropp, J. S., Latos-Grazynski, L., Balch, A. L., Johnson, R. B., Smith, K. M., Parish, D. W., and Cheng, R.-J., 1983, Proton NMR characterization of the ferryl group in model heure complexes and hemoproteins: Evidence for the Fe’v=O group in ferryl myoglobin and compound II of horseradish peroxidase, J. Am. Chem. Soc. 105: 782–787.Google Scholar
  55. 55.
    Hoffman, B. M., Roberts, J. E., Kang, C. H., and Margoliash, E., 1981, Electron paramagnetic and electron nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase, J. Biol. Chem. 256: 6556–6564.PubMedGoogle Scholar
  56. 56.
    Courtin, F., Michot, J.-L., Virion, A., Pommier, J., and Deme, D., 1984, Reduction of lactoperoxidase—H2O2 compounds by ferrocyanide: Indirect evidence of an apoprotein site for one of the two oxidizing equivalents, Biochem. Biophys. Res. Commun. 121: 463–470.PubMedGoogle Scholar
  57. 57.
    Courtin, F., Deme, D., Virion, A., Michot, J.-L., Pommier, J., and Nunez, J., 1982, The role of lactoperoxidase—H2O2 compounds in the catalysis of thyroglobulin iodination and thyroid hormone synthesis, Eur. J. Biochem. 124: 603–609.PubMedGoogle Scholar
  58. 58.
    Yonetani, T., and Schleyer, H., 1967, Studies on cytochrome c peroxidase: The reaction of ferrimyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrimyoglobin and cytochrome c peroxidase. J. Biol. Chem. 242: 19741979.Google Scholar
  59. 59.
    King, N. K., Looney, F. D., and Winfield, M. E., 1967, Amino acid free radicals in oxidized myoglobin, Biochim. Biophys. Acta 133: 65–82.Google Scholar
  60. 60.
    Groves, J. T., and Nemo, T. E., 1983, Aliphatic hydroxylation catalyzed by iron porphyrin complexes, J. Am. Chem. Soc. 105: 6243–6248.Google Scholar
  61. 61.
    Hamilton, G. A., 1974, Chemical models and mechanisms for oxygenases, in: Molecular Mechanisms of Oxygen Activation ( O. Hayaishi, ed.), Academic Press, New York, pp. 405–448.Google Scholar
  62. 62.
    Groves, J. T., Watanabe, Y., and McMurry, T. J., 1983, Oxygen activation by metalloporphyrins: Formation and decomposition of an acylperoxymanganese(III) complex, J. Am. Chem. Soc. 105: 4489–4490.Google Scholar
  63. 63.
    Khenkin, A. M., and Shteinman, A. A., 1984, The mechanism of oxidation of alkanes by peroxo complexes of iron porphyrins in the presence of acylating agents: A model for activation of 02 by cytochrome P-450, J. Chem. Soc. Chem. Commun. 1984: 1219–1220.Google Scholar
  64. 64.
    Sligar, S. G., Kennedy, K. A., and Pearson, D. C., 1980, Chemical mechanisms for cytochrome P-450 hydroxylation: Evidence for acylation of heure bound dioxygen, Proc. Natl. Acad. Sci. USA 77: 1240–1244.PubMedGoogle Scholar
  65. 65.
    Poulos, T. L., and Kraut, J., 1980, The stereochemistry of peroxidase catalysis, J. Biol. Chem. 255: 8199–8205.PubMedGoogle Scholar
  66. 66.
    Finzel, B. C., Poulos, T. L., and Kraut, J., 1984, Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution, J. Biol. Chem. 259: 13027–13036.PubMedGoogle Scholar
  67. 67.
    Dunford, H. B., 1982, Peroxidases, in: Advances in Inorganic Biochemistry ( G. Eichhorn and L. G. Marzilli, eds.), Elsevier, Amsterdam, pp. 41–68.Google Scholar
  68. 68.
    Dunford, H. B., and Araiso, T., 1979, Horseradish peroxidase. XXXVI. On the difference between peroxidase and metmyoglobin, Biochem. Biophys. Res. Commun. 89: 764–768.PubMedGoogle Scholar
  69. 69.
    McCandlish, E., Miksztal, A. R., Nappa, M., Sprenger, A. Q., Valentine, J. S., Stong, J. D., and Spiro, T. G., 1980, Reactions of superoxide with iron porphyrins in aprotic solvents: A high spin ferric porphyrin peroxo complex, J. Am. Chem. Soc. 102: 42684271.Google Scholar
  70. 70.
    Ataollah, S., and Goff, H. M., 1982, Characterization of superoxide—metalloporphyrin reaction products: Effective use of deuterium NMR spectroscopy, J. Am. Chem. Soc. 104: 6318–6322.Google Scholar
  71. 71.
    Welborn, C. H., Dolphin, D., and James, B. R., 1981, One-electron electrochemical reduction of a ferrous porphyrin dioxygen complex, J. Am. Chem. Soc. 103: 2869–2871.Google Scholar
  72. 72.
    Mansuy, D., Battioni, P., and Renaud, J.-P., 1984, In the presence of imidazole, iron-and manganese-porphyrins catalyze the epoxidation of alkenes by alkyl hydroperoxides, J. Chem. Soc. Chem. Commun. 1984: 1255–1257.Google Scholar
  73. 73.
    Hrycay, E. G., and O’Brien, P. J., 1971, Cytochrome P-450 as a microsomal peroxidase utilizing a lipid peroxide substrate, Arch. Biochem. Biophys. 147: 14–27.PubMedGoogle Scholar
  74. 74.
    Hrycay, E. G. and O’Brien, P. J., 1972, Cytochrome P-450 as a microsomal peroxidase in steroid hydroperoxide reduction, Arch. Biochem. Biophys. 153: 480–494.PubMedGoogle Scholar
  75. 75.
    Hrycay, E. G., and O’Brien, P. J., 1974, Microsomal electron transport. II. Reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome P-450 as electron carriers in microsomal NADH-peroxidase activity, Arch. Biochem. Biophys. 160: 230–245.PubMedGoogle Scholar
  76. 76.
    O’Brien, P. J., 1978, Hydroperoxides and superoxides in microsomal oxidations, Pharmac. Ther. A 2: 517–536.Google Scholar
  77. 77.
    Rahimtula, A. D., and O’Brien, P. J., 1977, The hydroperoxide dependent microsomal oxidation of alcohols, Eur. J. Biochem. 77: 210–211.Google Scholar
  78. 78.
    Hrycay, E. G., and O’Brien, P. J., 1971, The peroxidase nature of cytochrome P-420 utilizing a lipid peroxide substrate, Arch. Biochem. Biophys. 147: 28–35.PubMedGoogle Scholar
  79. 79.
    O’Brien, P. J., and Rahimtula, A., 1975, Involvement of cytochrome P-450 in the intracellular formation of lipid peroxides. J. Agr. Food Chem. 23: 154–158.Google Scholar
  80. 80.
    Lindstrom, T. D., and Aust, S. D., 1984, Studies on cytochrome P-450-dependent lipid hydroperoxide reduction, Arch. Biochem. Biophys. 233: 80–87.PubMedGoogle Scholar
  81. 81.
    Cavallini, L., Valente, M., and Bindoli, A., 1983, NADH and NADPH inhibit lipid peroxidation promoted by hydroperoxides in rat liver microsomes, Biochim. Biophys. Acta 752: 339–345.PubMedGoogle Scholar
  82. 82.
    Ishimaru, A., and Yamazaki, I., 1977, Hydroperoxide-dependent hydroxylation involving “H2O2-reducible hemoprotein” in microsomes of pea seeds: A new type enzyme acting on hydroperoxide and a physiological role of seed lipoxygenase, J. Biol. Chem. 252: 6118–6124.Google Scholar
  83. 83.
    Kadlubar, F. F., Morton, K. C., and Ziegler, D. M., 1973, Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines, Biochem. Biophys. Res. Commun. 54:1255-1261.Google Scholar
  84. 84.
    Nordblom, G. D., White, R. E., and Coon, M. J., 1976, Studies on hydroperoxidedependent substrate hydroxylation by purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys. 175: 524–533.PubMedGoogle Scholar
  85. 85.
    Ingelman-Sundberg, M., and Ekstrom, G., 1982, Aniline is hydroxylated by the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism, Biochem. Biophys. Res. Commun. 106: 625–631.PubMedGoogle Scholar
  86. 86.
    Johansson, 1., and Ingelman-Sundberg, M., 1983, Hydroxyl radical-mediated cytochrome P-450-dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver, J. Biol. Chem. 258: 7311–7316.Google Scholar
  87. 87.
    Ashley, P. L., and Griffin, B. W., 1981, Involvement of radical species in the oxidation of aminopyrine and 4-aminoantipyrine by cumene hydroperoxide in rat liver microsomes, Mol. Pharmacol. 19: 146–152.PubMedGoogle Scholar
  88. 88.
    Griffin, B. W., 1982, Use of spin traps to elucidate radical mechanisms of oxidations by hydroperoxides catalyzed by hemoproteins, Can. J. Chem. 60: 1463–1473.Google Scholar
  89. 89.
    Rahimtula, A. D., and O’Brien, P. J., 1975, Hydroperoxide-dependent 0-dealkylation reactions catalyzed by liver microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 62: 268–275.PubMedGoogle Scholar
  90. 90.
    Burke, D. M., and Mayer, R. T., 1975, Inherent specificities of purified cytochrome P-450 and P-448 toward biphenyl hydroxylation and ethoxyresorufin deethylation, Drug Metab. Dispos. 3: 245–253.PubMedGoogle Scholar
  91. 91.
    Rahimtula, A. D., and O’Brien, P. J., 1974, Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P-450, Biochem. Biophys. Res. Commun. 60: 440–447.PubMedGoogle Scholar
  92. 92.
    Hrycay, E. G., Gustafsson, J.-A., Ingelman-Sundberg, M., and Ernster. L., 1975, Sodium periodate, sodium chlorite, organic hydroperoxides. and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450, Biochem. Biophys. Res. Commun. 66: 209–216.PubMedGoogle Scholar
  93. 93.
    Ellin, A., and Orrenius, S., 1975, Hydroperoxide-supported cytochrome P-450-linked fatty acid hydroxylation in liver microsomes, FEBS Lett. 50: 378–381.PubMedGoogle Scholar
  94. 94.
    Danielsson, H., and Wikvall, K., 1976, On the ability of cumene hydroperoxide and Na1O4 to support microsomal hydroxylations in biosynthesis and metabolism of bile acids, FEBS Leu. 66: 299–302.Google Scholar
  95. 95.
    Gustafsson, J.-A, Hrycay, E. G., and Ernster, L., 1976, Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in steroid hydroxylation reactions catalyzed by adrenocortical microsomal and mitochondria) cytochrome P450, Arch. Biochem. Biophys. 174: 440–453.PubMedGoogle Scholar
  96. 96.
    Hrycay, E. G., Gustafsson, J.-A, Ingelman-Sundberg, M., and Ernster, L., 1976, The involvement of cytochrome P-450 in hepatic microsomal steroid hydroxylation reactions supported by sodium periodate, sodium chlorite, and organic hydroperoxides, Eur. J. Biochem. 61: 43–52.PubMedGoogle Scholar
  97. 97.
    Rahimtula, A. D., O’Brien, P. J., Seifried, H. E., and Jerina, D. M., 1978, The mechanism of action of cytochrome P-450: Occurrence of the “NIH shift” during hydroperoxide-dependent aromatic hydroxylations, Eur. J. Biochem. 89: 133–141.PubMedGoogle Scholar
  98. 98.
    Fasco, M. J., Piper, L. J., and Kaminsky, L. S., 1979, Cumene hydroperoxide-supported microsomal hydroxylations of warfarin—A probe of cytochrome P-450 multiplicity and specificity, Biochem. Pharmacol. 28: 97–103.PubMedGoogle Scholar
  99. 99.
    Kelly, W. G., and Stolee, A. H., 1978, Stabilization of placental aromatase by dithiothreitol in the presence of oxidizing agents, Steroids 31: 533–539.PubMedGoogle Scholar
  100. 100.
    Koop, D. R., and Hollenberg, P. F., 1980, Kinetics of the hydroperoxide-dependent dealkylation reactions catalyzed by rabbit liver microsomal cytochrome P-450, J. Biol. Chem. 255: 9685–9692.PubMedGoogle Scholar
  101. 101.
    Blake, R. C., and Coon, M. J., 1980. On the mechanism of action of cytochrome P450: Spectral intermediates in the reactions of P-450í,M2 with peroxy compounds, J. Biol. Chem. 255: 4100–4111.PubMedGoogle Scholar
  102. 102.
    Blake, R. C., and Coon, M. J., 1981, On the mechanism of action of cytochrome P450: Role of peroxy spectral intermediates in substrate hydroxylation, J. Biol. Chem. 256: 5755–5763.PubMedGoogle Scholar
  103. 103.
    Blake, R. C., and Coon, M. J., 1981, On the mechanism of action of cytochrome P450: Evaluation of homolytic and heterolytic mechanisms of oxygen—oxygen bond cleavage during substrate hydroxylation by peroxides, J. Biol. Chem. 256: 12127–12133.PubMedGoogle Scholar
  104. 104.
    Rahimtula, A. D., O’Brien, P. J., Hrycay, E. G., Peterson, J. A., and Estabrook, R. W., 1974, Possible higher valence states of cytochrome P-450 during oxidative reactions, Biochem. Biophys. Res. Commun. 60: 695–702.PubMedGoogle Scholar
  105. 105.
    Larroque, C., and van Lier, J. E., 1983, Spectroscopic evidence for the formation of a transient species during cytochrome P-450,ßc induced hydroperoxysterol-glycol conversions, Biochem. Biophys. Res. Commun. 112: 655–662.PubMedGoogle Scholar
  106. 106.
    Wagner, G. C., Palcic, M. M., and Dunford, H. B., 1983, Absorption spectra of cytochrome P-450ca,,, in the reaction with peroxy acids, FEBS Lett. 156: 244–248.PubMedGoogle Scholar
  107. 107.
    White, R. E., Sligar, S. G., and Coon, M. J., 1980, Evidence for a homolytic mechanism of peroxide oxygen—oxygen bond cleavage during substrate hydroxylation by cytochrome P-450, J. Biol. Chem. 255: 11108–11111.PubMedGoogle Scholar
  108. 108.
    Dix, T. A., and Marnett, L. J., 1983, Hematin-catalyzed rearrangement of hydroperoxylinoleic acid to epoxy alcohols via an oxygen rebound, J. Am. Chem. Soc. 105: 7001–7002.Google Scholar
  109. 109.
    Pace-Asciak, C. R., 1984, Arachidonic acid epoxides: Demonstration through [18O]oxygen studies of an intramolecular transfer of the terminal hydroxyl group of (12s)-hydroperoxyeicosa-5,8,10,14-tetraenoic acid to form hydroperoxides, J. Biol. Chem. 259: 8332–8337.PubMedGoogle Scholar
  110. 110.
    McCarthy, M.-B., and White, R. E., 1983, Competing modes of peroxyacid flux through cytochrome P-450, J. Biol. Chem. 258: 11610–11616.PubMedGoogle Scholar
  111. 111.
    Capdevila, J., Estabrook, R. W., and Prough, R. A., 1980, Differences in the mechanism of NADPH- and cumene hydroperoxide-supported reactions of cytochrome P450, Arch. Biochem. Biophys. 200: 186–195.PubMedGoogle Scholar
  112. 112.
    Hlavica, P., Golly, 1., and Mietaschk, J., 1983, Comparative studies on the cumene hydroperoxide-and NADPH-supported N-oxidation of 4-chloroaniline by cytochrome P-450, Biochem. J. 212: 539–547.Google Scholar
  113. 113.
    Renneberg, R., Damerau, W., Jung, C., Ebert, B., and Scheller, F., 1983, Study of H2O2-supported N-demethylations catalyzed by cytochrome P-450 and horseradish peroxidase, Biochem. Biophys. Res. Commun. 113: 332–339.PubMedGoogle Scholar
  114. 114.
    Bartsch, H., and Hecker, E., 1971, On the metabolic activation of the carcinogen Nhydroxy-N-2-acetylaminofluorene. III. Oxidation with horseradish peroxidase to yield 2-nitrosofluorene and N-acetoxy-N-2acetylaminofluorene, Biochim. Biophys. Acta 237: 567–578.PubMedGoogle Scholar
  115. 115.
    Reigh, D. L., and Floyd, R. A., 1981, Evidence for a cytochrome P-420 catalyzed mechanism of activation of N-hydroxy-2-acetylaminofluorene, Cancer Biochem. Biophys. 5: 213–217.Google Scholar
  116. 116.
    Stier, A., Reitz, I., and Sackmann, E., 1972, Radical accumulation in liver microsomal membranes during biotransformation of aromatic amines and nitro compounds, Naunyn-Schmiedebergs Arch. Pharmacol. 274: 189–191.PubMedGoogle Scholar
  117. 117.
    Coon, M. J., White, R. E., and Blake, R. C., 1979, Mechanistic studies with purified liver microsomal cytochrome P-450: Comparison of 02- and peroxide-supported hydroxylation reactions, in: Oxidases and Related Redox Systems ( T. E. King, H. S. Mason, and M. Morrison, eds.), Pergamon Press, Elmsford, N.Y., pp. 857–885.Google Scholar
  118. 118.
    Wagner, G. C., and Gunsalus, I. C., 1982, Cytochrome P-450: Structure and states, in: Biology and Chemistry of Iron, NATO Adv. Study Inst. Ser. C 89: 405–412.Google Scholar
  119. 119.
    King, N. K., Looney, F. D., and Winfield, M. E., 1967, Amino acid free radicals in oxidized metmyoglobin, Biochim. Biophys. Acta 133: 65–82.Google Scholar
  120. 120.
    Yonetani, T., and Schleyer, H., 1967, Studies on cytochrome c peroxidase. The reaction of ferrimyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrimyoglobin and cytochrome c peroxidase, J. Biol. Chem. 242: 19741979.Google Scholar
  121. 121.
    Renneberg, R., Scheller, F., Ruckpaul, K., Pirrwitz, J., and Mohr, P., 1978, NADPH and H2O2-dependent reactions of cytochrome P-450LM compared with peroxidase catalysis, FEBS Lett. 96: 349–353.PubMedGoogle Scholar
  122. 122.
    Renneberg, R., Capdevila, J., Chacos, N., Estabrook, R. W., and Prough, R. A., 1981, Hydrogen peroxide-supported oxidation of benzo[a]pyrene by rat liver microsomal fractions, Biochem. Pharmacol. 30: 843–848.PubMedGoogle Scholar
  123. 123.
    Estabrook, R. W., Martin-Wixtrom, C., Saeki, Y., Renneberg, R., Hildebrandt, A., and Werringloer, J., 1984, The peroxidatic function of liver microsomal cytochrome P-450: Comparison of hydrogen peroxide and NADPH-catalyzed N-demethylation reactions, Xenobiotica 14: 87–104.PubMedGoogle Scholar
  124. 124.
    Holm, K. A., Engel!, R. J., and Kupfer, D., 1985, Regioselectivity of hydroxylation of prostaglandins by liver microsomes supported by NADPH versus H2O2 in methylcholanthrene-treated and control rats: Formation of novel prostaglandin metabolites, Arch. Biochem. Biophys. 237: 477–489.PubMedGoogle Scholar
  125. 125.
    Gustafsson, J.-A., Rondahl, L., and Bergman, J., 1979, Iodosylbenzene derivatives as oxygen donors in cytochrome P-450 catalyzed steroid hydroxylations, Biochemistry 18: 865–870.PubMedGoogle Scholar
  126. 126.
    Gustaffson, J.-A, and Bergman, J., 1976, Iodine-and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P-450-dependent fatty acid hydroxylation reactions in rat liver microsomes, FEBS Lett. 70: 276–280.Google Scholar
  127. 127.
    Lichtenberger, F., Nastainczyk, W., and Ullrich, V., 1976, Cytochrome P-450 as an oxene transferase, Biochem. Biophys. Res. Commun. 70: 939–946.PubMedGoogle Scholar
  128. 128.
    Berg, A., Ingelman-Sundberg, M., and Gustaffson, J.-A, 1979, Purification and characterization of cytochrome P-450,,,eg, J. Biol. Chem. 254: 5264–5271.PubMedGoogle Scholar
  129. 129.
    Heimbrook, D. C., and Sligar, S. G., 1981, Multiple mechanisms of cytochrome P450-catalyzed substrate hydroxylation, Biochem. Biophys. Res. Commun. 99: 530–535.PubMedGoogle Scholar
  130. 130.
    Macdonald, T. L., Burka, L. T., Wright, S. T., and Guengerich, F. P., 1982, Mechanisms of hydroxylation by cytochrome P-450: Exchange of iron—oxygen intermediates with water, Biochem. Biophys. Res. Commun. 104: 620–625.PubMedGoogle Scholar
  131. 131.
    Kexel, H., Schmelz, E., and Schmidt, H.-L., 1977, Oxygen transfer in microsomal oxidative desulfuration, in: Microsomes and Drug Oxidations ( V. Ullrich, I. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 269–274.Google Scholar
  132. 132.
    Schardt, B. C., and Hill, C. L., 1983, Preparation of iodobenzene dimethoxide: A new synthesis of [18O]iodosylbenzene and a reexamination of its infrared spectrum, Inorg. Chem. 22: 1563–1565.Google Scholar
  133. 133.
    Groves, J. T., and Kruper, W. J., 1979, Preparation and characterization of an oxoporphinatochromium(V) complex, J. Am. Chem. Soc. 101:7613–7615.Google Scholar
  134. 134.
    Groves, J. T., Kruper, W. J., and Haushalter, R. C., 1980, Hydrocarbon oxidations with oxometalloporphinates: Isolation and reactions of a (porphinato)manganese(V) complex, J. Am. Chem. Soc. 102:6375–6377.Google Scholar
  135. 135.
    Rein, H., Maricic, S., Janig, G. R., Vuk-Pavlovic, S., Benko, B., Ristau, O., and Ruckpaul, K., 1976, Haem accessibility in cytochrome P-450 from rabbit liver: A proton magnetic relaxation study by stereochemical probes, Biochim. Biophys. Acta 446: 325330.Google Scholar
  136. 136.
    Hayano, M., Lindberg, M. C., Dorfman, R. I., Hancock, J. E. H., and von Doering, W. E., 1955, On the mechanism of the C-11p-hydroxylation of steroids: A study with H2O18 and 0218, Arch. Biochem. Biophys. 59: 529–532.PubMedGoogle Scholar
  137. 137.
    Hayano, M., Saito, A., Stone, D., and Dorfman, R. I., 1956, Hydroxylation of steroids by microorganisms in the presence of 1802, Biochim. Biophys. Acta 21: 380–381.PubMedGoogle Scholar
  138. 138.
    Watanabe, Y., Iyanagi, T., and Oae, S., 1980, Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P-450, Tetrahedron Lett. 21: 3685–3688.Google Scholar
  139. 139.
    Watanabe, Y., Numata, T., Iyanagi, T., and Oae, S., 1981, Enzymatic oxidation of alkyl sulfides by cytochrome P-450 and hydroxyl radical, Bull. Chem. Soc. Jpn. 54: 1163–1170.Google Scholar
  140. 140.
    Nordblom, G. D., White, R. E., and Coon, M. J., 1976, Studies on hydroperoxidedependent substrate hydroxylation by purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys. 175: 524–533.PubMedGoogle Scholar
  141. 141.
    White, R. E., and McCarthy, M.-B., 1984, Aliphatic hydroxylation by cytochrome P450: Evidence for rapid hydrolysis of an intermediate iron—nitrene complex, J. Am. Chem. Soc. 106: 4922–4926.Google Scholar
  142. 142.
    Heimbrook, D. C., Murray, R. E., Egeberg, K. D., Sligar, S. G., Nee, M. W., and Bruice, T. C., 1984, Demethylation of N,N-dimethylaniline and p-cyano-N,N-dimethylaniline and their N-oxides by cytochromes P450LM2 and P450cam, J. Am. Chem. Soc. 106: 1514–1515.Google Scholar
  143. 143.
    Staudt, H., Lichtenberger, F., and Ullrich, V., 1974, The role of NADH in uncoupled microsomal monooxygenations, Eur. J. Biochem. 46: 99–106.PubMedGoogle Scholar
  144. 144.
    Gorsky, L. D., Koop, D. R., and Coon, M. J., 1984, On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P450: Products of oxygen reduction, J. Biol. Chem. 259: 6812–6817.PubMedGoogle Scholar
  145. 145.
    Guengerich, F. P., 1978, Destruction of heure and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase, Biochemistry 17: 3633–3639.PubMedGoogle Scholar
  146. 146.
    Jeffery, E., Kotake, A., Azhary, R. E., and Mannering, G. J., 1977, Effects of linoleic acid hydroperoxide on the hepatic monooxygenase systems of microsomes from untreated, phenobarbital-treated, and 3-methylcholanthrene-treated rats, Mol. Pharmacol. 13: 415–425.PubMedGoogle Scholar
  147. 147.
    Yoshinaga, T., Sassa, S., and Kappas, A., 1982, A comparative study of heure degradation by NADPH-cytochrome c reductase alone and by the complete heure oxygenate system: Distinctive aspects of heure degradation by NADPH-cytochrome c reductase, J. Biol. Chem. 257: 7794–7802.PubMedGoogle Scholar
  148. 148.
    Schaefer, W. H., Harris, T. M., and Guengerich, F. P., 1985, Characterization of the enzymatic and non-enzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heure, Biochemistry 24: 3254–3263.PubMedGoogle Scholar
  149. 149.
    Hornsby, P. J., 1980, Regulation of cytochrome P-450-supported 11p-hydroxylation of deoxycortisol by steroids, oxygen, and antioxidants in adrenocortical cell cultures, J. Biol. Chem. 255: 4020–4027.PubMedGoogle Scholar
  150. 150.
    Quinn, P. G., and Payne, A. H., 1985, Steroid product-induced, oxygen-mediated damage of microsomal cytochrome P-450 enzymes in Leydig cell cultures, J. Biol. Chem. 260: 2092–2099.PubMedGoogle Scholar
  151. 151.
    Klimek, J., Schaap, A. P., and Kimura, T., 1983, The relationship between NADPHdependent lipid peroxidation and degradation of cytochrome P-450 in adrenal cortex mitochondria, Biochem. Biophys. Res. Commun. 110: 559–566.PubMedGoogle Scholar
  152. 152.
    Cadenas, E., Sies, H., Graf, H., and Ullrich, V., 1983, Oxene donors yield low-level chemiluminescence with microsomes and isolated cytochrome P-450, Eur. J. Biochem. 130: 117–121.PubMedGoogle Scholar
  153. 153.
    Bergstrom, S., Lindstredt, S., Samuelson, B., Corey, E. J., and Gregoriou, G. A., 1958, The stereochemistry of 7a-hydroxylation in the biosynthesis of cholic acid from cholesterol, J. Am. Chem. Soc. 80: 2337–2338.Google Scholar
  154. 154.
    Corey, E. J., Gregoriou, G. A., and Peterson, D. H., 1958, The stereochemistry of I 1a-hydroxylation of steroids, J. Am. Chem. Soc. 80: 2338.Google Scholar
  155. 155.
    McMahon, R. E., Sullivan, H. R., Craig, J. C., and Pereira, W. E., 1969, The microsomal oxygenation of ethyl benzene: Isotopic, stereochemical, and induction studies, Arch. Biochem. Biophys. 132: 575–577.PubMedGoogle Scholar
  156. 156.
    Hamberg, M., and Bjorkhem, I., 1971, co-Oxidation of fatty acids. I. Mechanism of microsomal wl-and w2-hydroxylation, J. Biol. Chem. 246: 7411–7416.Google Scholar
  157. 157.
    Shapiro, S., Piper, J. U., and Caspi, E., 1982, Steric course of hydroxylation at primary carbon atoms: Biosynthesis of 1-octanol from (IR)- and (1S)-[1–3H,2H,’H;1-“C]octane by rat liver microsomes, J. Am. Chem. Soc. 104: 2301–2305.Google Scholar
  158. 158.
    Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450: Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedGoogle Scholar
  159. 159.
    Gelb, M. H., Heimbrook, D. C., Malkonen, P., and Sligar, S. G., 1982, Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450cam monooxygenase system, Biochemistry 21: 370–377.PubMedGoogle Scholar
  160. 160.
    White, R. E., Bhattacharyya, A., Miller, J. P., and Favreau, L. V.. 1985, Stereo-chemistry of aliphatic hydroxylation by cytochrome P-450 isozymes, Fed. Prot.. 44: 474.Google Scholar
  161. 161.
    Tanaka, K., Kurihara, N., and Nakajima, M., 1979, Oxidative metabolism of tetrachlorocyclohexenes, pentachlorocyclohexenes, and hexachlorocyclohexenes with microsomes from rat liver and house fly abdomen, Pestle. Biochem. Physiol. 10: 79–95.Google Scholar
  162. 162.
    Groves, J. T., and Subramanian, D. V., 1984, Hydroxylation by cytochrome P-450 and metalloporphyrin models: Evidence for allylic rearrangement, J. Am. Ozem. Soc. 106: 2177–2181.Google Scholar
  163. 163.
    Griller, D., and Ingold, K. U., 1980, Free-radical clocks, Ace. Chem. Res. 13: 317323.Google Scholar
  164. 164.
    White, R. E., Groves, J. T., and McClusky, G. A., 1979, Electronic and steric factors in regioselective hydroxylation catalyzed by purified cytochrome P-450, Acta Biol. Med. Ger. 38: 475–482.PubMedGoogle Scholar
  165. 165.
    Sugar, S. G., Gelb, M. H., and Heimbrook, D. C., 1984, Bio-organic chemistry and cytochrome P-450-dependent catalysis, Xenobiotica 14: 63–86.Google Scholar
  166. 166.
    Wong, P. C., and Griller, D., 1981, A kinetic EPR study of the norbornenyl-nortricyclyl radical rearrangement, J. Org . Chem. 46: 2327–2329.Google Scholar
  167. 167.
    Simons, J. W., and Rabinovitch, B. S., 1963, Deuterium isotope effects in rates of methylene radical insertion into carbon—hydrogen bonds and across carbon carbon double bonds, J. Am. Chem. Soc. 85: 1023–1024.Google Scholar
  168. 168.
    Goldstein, M. J., and Dolbier, W. R., 1965, The intramolecular insertion mechanism of a-haloneopentyl lithium, J. Am. Chem. Soc. 87: 2293–2295.Google Scholar
  169. 169.
    O’Ferrall, R. A. M., 1970, Model calculations of hydrogen isotope effects for nonlinear transition states, J. Chem. Soc. B 1970: 785–790.Google Scholar
  170. 170.
    Hjelmeland, L. M., Aronow, L., and Trudell, J. R., 1977, Intramolecular determination of primary kinetic isotope effects in hydroxylations catalyzed by cytochrome P-450, Biochem. Biophys. Res. Commun. 76: 541–549.Google Scholar
  171. 171.
    Foster, A. B., Jarman, M., Stevens, J. D., Thomas, P., and Westwood, J. H., 1974, Isotope effects in O- and N-demethylations mediated by rat liver microsomes: An application of direct insertion electron impact mass spectrometry, Chem. Biol. Interact 9: 327–340.PubMedGoogle Scholar
  172. 172.
    Miwa, G. T., Walsh, J. S., and Lu, A. Y. H., 1984, Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions: The oxidative 0-dealkylation of 7-ethoxycoumarin, J. Biol. Chem. 259: 3000–3004.PubMedGoogle Scholar
  173. 173.
    Lu, A. Y. H., Harada, N., and Miwa, G. T., 1984, Rate-limiting steps in cytochrome P-450-catalyzed reactions: Studies on isotope effects in the 0-deethylation of 7-ethoxycoumarin, Xenobiotica 14: 19–26.PubMedGoogle Scholar
  174. 174.
    Frommer, U., Ullrich, V., and Staudinger, H., 1970, Hydroxylation of aliphatic corn-pounds by liver microsomes. I. The distribution of isomeric alcohols, Hoppe-Seylers Z. Physiol. Chem. 351: 903–912.PubMedGoogle Scholar
  175. 175.
    White, R. E., McCarthy, M.-B., Egeberg, K. D., and Sligar, S. G., 1984, Regioselectivity in the cytochromes P-450: Control by protein constraints and by chemical reactivities, Arch. Biochem. Biophys. 228: 493–502.PubMedGoogle Scholar
  176. 176.
    Stearns, R. A., and Ortiz de Montellano, P. R., 1985, Cytochrome P-450-catalyzed oxidation of quadricyclane: Evidence for a radical cation intermediate, J. Am. Chem. Soc. 107: 4081–4082.Google Scholar
  177. 177.
    Gassman, P. G., and Yamaguchi, R., 1982, Electron transfer from highly strained polycyclic molecules, Tetrahedron 38: 1113–1122.Google Scholar
  178. 178.
    Watabe, T., and Akamatsu, K., 1974, Microsomal epoxidation of cis-stilbene: Decrease in epoxidase activity related to lipid peroxidation, Biochem. Pharmacol. 23: 1079–1085.PubMedGoogle Scholar
  179. 179.
    Watabe, T., Ueno, Y., and Imazumi, J., 1971, Conversion of oleic acid into threodihydroxystearic acid by rat liver microsomes, Biochem. Pharmacol. 20: 912–913.PubMedGoogle Scholar
  180. 180.
    Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. 0., 1983, Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation, J. Biol. Chem. 258: 4202–4207.Google Scholar
  181. 181.
    Hanzlik, R. P., and Shearer, G. 0., 1978, Secondary deuterium isotope effects on olefin epoxidation by cytochrome P-450, Biochem. Pharmacol. 27: 1441–1444.PubMedGoogle Scholar
  182. 182.
    Hanzlik, R. P., and Shearer, G. 0., 1975, Transition state structure for peracid epoxidation: Secondary deuterium isotope effects, J. Am. Chem. Soc. 97: 5231–5233.Google Scholar
  183. 183.
    Henschler, D., Hoos, W. R., Fetz, H., Dallmeier, E., and Metzler, M., 1979, Reactions of trichloroethylene epoxide in aqueous systems, Biochem. Pharmacol. 28: 543–548.PubMedGoogle Scholar
  184. 184.
    Miller, R. E., and Guengerich, F. P., 1982, Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide, Biochemistry 21:1090-1097.Google Scholar
  185. 185.
    Liebler, D. C., and Guengerich, F. P., 1983, Olefin oxidation by cytochrome P-450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans- 1 -phenyl-l-butene, Biochemistry 22: 5482–5489.PubMedGoogle Scholar
  186. 186.
    Mansuy, D., Leclaire, J., Fontecave, M., and Momenteau, M., 1984, Oxidation of monosubstituted olefins by cytochromes P-450 and heure models: Evidence for the formation of aldehydes in addition to epoxides and allylic alcohols, Biochem. Biophys. Res. Commun. 119: 319–325.PubMedGoogle Scholar
  187. 187.
    Ortiz de Montellano, P. R., and Kunze, K. L., 1981, Shift of the acetylenic hydrogen during chemical and enzymatic oxidation of the biphenylacetylene triple bond, Arch. Biochem. Biophys. 209: 710–712.Google Scholar
  188. 188.
    Ortiz de Montellano, P. R., 1985, Alkenes and alkynes, in: Bioactivation of Foreign Compounds ( M. W. Anders, ed.), Academic Press, New York, pp. 121–155.Google Scholar
  189. 189.
    McMahon, R. E., Turner, J. C., Whitaker, G. W., and Sullivan, H. R., 1981, Deuterium isotope effect in the biotransformation of 4-ethynylbiphenyls to 4-biphenylacetic acids by rat hepatic microsomes, Biochem. Biophys. Res. Commun. 99: 662–667.PubMedGoogle Scholar
  190. 190.
    Ortiz de Montellano, P. R., and Komives, E. A., 1985, Branchpoint for heure alkylation and metabolite formation in the oxidation of aryl acetylenes by cytochrome P-450, J. Biol. Chem. 260: 3330–3336.Google Scholar
  191. 191.
    Jerina, D. M., and Daly, J. W., 1974, Arene oxides: A new aspect of drug metabolism, Science 185: 573–582.PubMedGoogle Scholar
  192. 192.
    Tomaszewski, J. E., Jerina, D. M., and Daly, J. W., 1975, Deuterium isotope effects during formation of phenols by hepatic monooxygenases: Evidence for an alternative to the arene oxide pathway Biochemistry 14: 2024–2030.PubMedGoogle Scholar
  193. 193.
    Preston, B. D. Miller, J. A., and Miller, E. C., 1983, Non-arene oxide aromatic ring hydroxylation of 2,2’,5,5’-tetrachlorobiphenyl as the major metabolic pathway catalyzed by phenobarbital-induced rat liver microsomes, J. Biol. Chem. 258: 8304–8311.PubMedGoogle Scholar
  194. 194.
    Bush, E. D., and Trager, W. F., 1982, Evidence against an abstraction or direct insertion mechanism for cytochrome P-450 catalyzed meta hydroxylations, Biochem. Biophys. Res. Commun. 104: 626–632.PubMedGoogle Scholar
  195. 195.
    Ritchie, C. D., and Sager, W. F., 1964, Structure—activity relationships, Prog. Phys. Org. Chem. 2: 323–400.Google Scholar
  196. 196.
    Billings, R. E., and McMahon, R. E., 1978, Microsomal biphenyl hydroxylation: The formation of 3-hydroxybiphenyl and biphenyl catechol, Mol. Pharmacol. 14: 145–154.PubMedGoogle Scholar
  197. 197.
    Swinney, D. C., Howald, W. N., and Trager, W. F., 1984, Intramolecular isotope effects associated with meta-hydroxylation of biphenyl catalyzed by cytochrome P450, Biochem. Biophys. Res. Commun. 118: 867–872.PubMedGoogle Scholar
  198. 198.
    Burka, L. T., Plucinski, T. M., and MacDonald, T. L., 1983, Mechanisms of hydroxylation by cytochrome P-450: Metabolism of monohalobenzenes by phenobarbital-induced microsomes, Proc. Natl. Acad. Sci. USA 80: 6680–6684.PubMedGoogle Scholar
  199. 199.
    Hanzlik, R. P., Hogberg, K., and Judson, C. M., 1984, Microsomal hydroxylation of specifically deuterated monosubstituted benzenes: Evidence for direct aromatic hydroxylation, Biochemistry 23: 3048–3055.PubMedGoogle Scholar
  200. 200.
    Augusto, O., Beilan, H. S., and Ortiz de Montellano, P. R., 1982, The catalytic mechanism of cytochrome P-450: Spin-trapping evidence for one electron substrate oxidation, J. Biol. Chem. 257:11288-11295.Google Scholar
  201. 201.
    Rauckman, E. J., Rosen, G. M., and Cavagnaro, J., 1982, Norcocaine nitroxide, a potential hepatotoxic metabolite of cocaine, Mol. Pharmacol. 21: 458–463.PubMedGoogle Scholar
  202. 202.
    Abdel-Monem, M. M., 1975, Isotope effects in enzymatic N-demethylation of tertiary amines, J. Med. Chem. 18: 427–430.PubMedGoogle Scholar
  203. 203.
    Miwa, G. T., Garland, W. A., Hodshon, B. J., Lu, A. Y. H., and Northrop, D. B., 1980, Kinetic isotope effects in cytochrome P-450-catalyzed oxidation reactions: Intermolecular and intramolecular deuterium isotope effects during the N-demethylation of N,N-dimethylphentermine, J. Biol. Chem. 255: 6049–6054.PubMedGoogle Scholar
  204. 204.
    Miwa, G. T., Walsh, J. S., Kedderis, G. L., and Hollenberg, P. F., 1983, The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalyzed N-demethylation reactions, J. Biol. Chem. 258: 14445–14449.PubMedGoogle Scholar
  205. 205.
    Dopp, D., and Heufer, J., 1982, N-Demethylation of N,N-dimethylaniline by photoexcited 3-nitrochlorobenzene, Tetrahedron Lett. 23: 1553–1556.Google Scholar
  206. 206.
    Shono, T., Toda, T., and Oshino, N., 1982, Electron transfer from nitrogen in microsomal oxidation of amine and amide: Simulation of microsomal oxidation by anodic oxidation, J. Am. Chem. Soc. 104: 2639–2641.Google Scholar
  207. 207.
    Watanabe, Y., Iyanagi, T., and Oae, S., 1982, One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P-450, Tetrahedron Lett. 23: 533–536.Google Scholar
  208. 208.
    Powell, M. F., Wu, J. C., and Bruice, T. C., 1984, Ferricyanide oxidation of dihydropyridines and analogues, J. Am. Chem. Soc. 106: 3850–3856.Google Scholar
  209. 209.
    Hanzlik, R. P., and Tullman, R. H., 1982, Suicidal inactivation of cytochrome P-450 by cyclopropylamines: Evidence for cation—radical intermediates, J. Am. Chem. Soc. 104: 2048–2050.Google Scholar
  210. 210.
    Macdonald, T. L., Zirvi, K., Burka, L. T., Peyman, P., and Guengerich, F. P., 1982, Mechanism of cytochrome P-450 inhibition by cyclopropylamines, J. Am. Chem. Soc. 104: 2050–2052.Google Scholar
  211. 211.
    Tullman, R. H., and Hanzlik, R. P., 1984, Inactivation of cytochrome P-450 and monoamine oxidase by cyclopropylamines, Drug Metab. Dispos. 15: 1163–1182.Google Scholar
  212. 212.
    Guengerich, F. P., Willard, R. J., Shea, J. P., Richards, L. E., and Macdonald, T. L., 1984, Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring opened products, J. Am. Chem. Soc. 106: 6446–6447.Google Scholar
  213. 213.
    Silverman, R. B., and Yamasaki, R. B., 1984, Mechanism-based inactivation of mitochondria] monoamine oxidase by N-(1-methylcyclopropyl)benzylamine, Biochemistry 23:1322-1332.Google Scholar
  214. 214.
    Silverman, R. B., 1983, Mechanism of inactivation of monoamine oxidase by trans-2phenylcyclopropylamine and the structure of the enzyme—inactivator adduct, J. Biol. Chem. 258: 14766–14769.PubMedGoogle Scholar
  215. 215.
    Wada, A., Okamoto, M., Nonaka, Y., and Yamano, T., 1984, Aldosterone biosynthesis by a reconstituted cytochrome P-450143 system, Biochem. Biophys. Res. Commun. 119: 365–371.PubMedGoogle Scholar
  216. 216.
    Lambeth, J. D., Kitchen, S. E., Farooqui, A. A., Tuckey, R., and Kamin, H., 1982, Cytochrome P-450,cc—substrate interactions: Studies of binding and catalytic activity using hydroxycholesterols, J. Biol. Chem. 257: 1876–1884.PubMedGoogle Scholar
  217. 217.
    Tuckey, R. C., and Kamin, H., 1983, Kinetics of 02 and CO binding to adrenal cytochrome P-450,ce: Effect of cholesterol, intermediates, and phosphatidylcholine vesicles, J. Biol. Chem. 258: 4232–4237.PubMedGoogle Scholar
  218. 218.
    Byon, C.-Y., and Gut, M., 1980, Steric considerations regarding the biodegradation of cholesterol to pregnenolone: Exclusion of (22S)-22-hydroxycholesterol and 22-ketocholesterol as intermediates, Biochem. Biophys. Res. Commun. 94: 549–552.PubMedGoogle Scholar
  219. 219.
    Burstein, S., Middleditch, B. S., and Gut, M., 1975, Mass spectrometric study of the enzymatic conversion of cholesterol to (22R)-22-hydroxycholesterol, (20R,22R)-20,22dihydroxycholesterol, and pregnenolone, and of (22R)-22-hydroxycholesterol to the glycol and pregnenolone in bovine adrenocortical preparations, J. Biol. Chem. 250: 9028–9037.PubMedGoogle Scholar
  220. 220.
    Fishman, J., 1982, Biochemical mechanisms of aromatization, Cancer Res. 42: 3277s - 3280s.PubMedGoogle Scholar
  221. 221.
    Thompson, E. A., and Siiteri, P. K., 1974, Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione, J. Biol. Chem. 249: 5364–5372.PubMedGoogle Scholar
  222. 222.
    Higashiyama, T., and Osawa, Y., 1984, Purification and partial characterization of two distinct human placental aromatase cytochromes P-450, Fed. Proc. 43: 2033.Google Scholar
  223. 223.
    Caspi, E., Arunachalam, T., and Nelson, P. A., 1983, Biosynthesis of estrogens: The steric mode of the initial C-19 hydroxylation of androgens by human placental aromatase, J. Am. Chem. Soc. 105: 6987–6989.Google Scholar
  224. 224.
    Osawa, Y., Shibata, K., Rohrer, D., Weeks, C., and Duax, W. L., 1975, Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis, J. Am. Chem. Soc. 97: 4400–4402.PubMedGoogle Scholar
  225. 225.
    Arigoni, D., Battaglia, R., Akhtar, M., and Smith, T., 1975, Stereospecificity of oxidation at C-19 in oestrogen biosynthesis, J. Chem. Soc. Chem. Commun. 1975: 185–186.Google Scholar
  226. 226.
    Miyairi, S., and Fishman, J., 1983, Novel method of evaluating biological 19-hydroxylation and aromatization of androgens, Biochem. Biophys. Res. Commun. 117: 39 2398.Google Scholar
  227. 227.
    Miyairi, S., and Fishman, J., 1985, Radiometric analysis of oxidative reactions in aromatization by placental microsomes: Presence of differential isotope effects, J. Biol. Chem. 260: 320–325.PubMedGoogle Scholar
  228. 228.
    Brodie, H. J., Kripalani, K. J., and Possanza, G., 1969, Studies on the mechanisms of estrogen biosynthesis. VI. The stereochemistry of hydrogen elimination at C-2 during aromatization, J. Am. Chem. Soc. 91: 1241–1242.PubMedGoogle Scholar
  229. 229.
    Fishman, J., and Guzik, H., 1969, Stereochemistry of estrogen biosynthesis, J. Am. Chem. Soc. 91: 2805–2806.PubMedGoogle Scholar
  230. 230.
    Fishman, J., Guzik, H., and Dixon, D., 1969, Stereochemistry of estrogen biosynthesis, Biochemistry 8: 4304–4309.PubMedGoogle Scholar
  231. 231.
    Fishman, J., and Raju, M. S., 1981, Mechanism of estrogen biosynthesis: Stereo-chemistry of C-1 hydrogen elimination in the aromatization of 20-hydroxy-I9-oxoandrostenedione, J. Biol. Chem. 256: 4472–4477.PubMedGoogle Scholar
  232. 232.
    Townsley, J. D., and Brodie, H. J., 1968, Studies on the mechanism of estrogen biosynthesis. Ill. The stereochemistry of aromatization of C19 and C18 steroids, Biochemistry 7: 33–40.PubMedGoogle Scholar
  233. 233.
    Hosoda, H., and Fishman, J., 1974, Usually facile aromatization of 213-hydroxy-19oxo-4-androstene-3,17-dione to estrone: Implications in estrogen biosynthesis, J. Am. Chem. Soc. 96: 7325–7329.PubMedGoogle Scholar
  234. 234.
    Goto, J., and Fishman, J., 1977, Participation of a nonenzymatic transformation in the biosynthesis of estrogens from androgens, Science 195: 80–81.PubMedGoogle Scholar
  235. 235.
    Hahn, E. F., and Fishman, J., 1984, Immunological probe of estrogen biosynthesis: Evidence for the 213-hydroxylative pathway in aromatization of androgens, J. Biol. Chem. 259: 1689–1694.PubMedGoogle Scholar
  236. 236.
    Akhtar, M., Calder, M. R., Corina, D. L., and Wright, J. N., 1982, Mechanistic studies on C-19 demethylation in oestrogen biosynthesis, Biochem. J. 201: 569–580.PubMedGoogle Scholar
  237. 237.
    Caspi, E., Wicha, J., Arunachalam, T., Nelson, P., and Spiteller, G., 1984, Estrogen biosynthesis: Concerning the obligatory intermediacy of 20-hydroxy-10ß-formylandrost-4-ene-3,17-dione, J. Am. Chem. Soc. 106: 7282–7283.Google Scholar
  238. 238.
    Morand, P., Williamson, D. G., Layne, D. S., Lompa-Krzymien, L., and Salvador, J., 1975, Conversion of an androgen epoxide into 1713-estradiol by human placental microsomes, Biochemistry 14: 635–638.PubMedGoogle Scholar
  239. 239.
    Covey, D. F., and Hood, W. F., 1982, A new hypothesis based on suicide substrate inhibitor studies for the mechanism of action of aromatase, Cancer Res. 42: 3327s - 3333s.PubMedGoogle Scholar
  240. 240.
    Beusen, D. D., and Covey, D. F., 1984, Study of the role of Schiff base formation in the aromatization of androgen substrates by human placenta, Fed. Proc. 43: 330.Google Scholar
  241. 241.
    Alexander, K., Akhtar, M., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1972, The removal of the 32-carbon atom as formic acid in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1972: 383–385.Google Scholar
  242. 242.
    Mitropoulos, K. A., Gibbons, G. F., and Reeves, E. A., 1976, Lanosterol 14a-demethylase: Similarity of the enzyme system from yeast and rat liver, Steroids 27: 82 1829.Google Scholar
  243. 243.
    Canonica, L., Fiecchi, A., Galli Kienle, M., Scala, A., Galli, G., Grossi Paoletti, E., and Paoletti, R., 1968, Evidence for the biological conversion of 0$14 sterol dienes into cholesterol, J. Am. Chem. Soc. 90: 6532–6534.PubMedGoogle Scholar
  244. 244.
    Gibbons, G. F., Goad, L. J., and Goodwin, T. W., 1968, The stereochemistry of hydrogen elimination from C-I5 during cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1968: 1458–1460.Google Scholar
  245. 245.
    Watkinson, I. A., Wilton, D. C., Munday, K. A., and Akhtar, M., 1971, The formation and reduction of the 14,15-double bond in cholesterol biosynthesis, Biochem. J. 121: 131–137.PubMedGoogle Scholar
  246. 246.
    Alexander, K. T. W., Akhtar, M., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1971, The pathway for the removal of C-32 in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1971: 1479–1481.Google Scholar
  247. 247.
    Akhtar, M., Freeman, C. W., Wilton, D. C., Boar, R. B., and Copsey, D. B., 1977, The pathway for the removal of the 14a-methyl group of lanosterol: The role of lanost8-ene-313,32-diol in cholesterol biosynthesis, Bioorg. Chem. 6: 473–481.Google Scholar
  248. 248.
    Akhtar, M., Alexander, K., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1978, Chemical and enzymic studies on the characterization of intermediates during the removal of the 14a-methyl group in cholesterol biosynthesis: The use of 32-functionalized lanostan derivatives, Biochem. J. 169: 449–463.PubMedGoogle Scholar
  249. 249.
    Pascal, R. A., Chang, P., and Schroepfer, G. J., 1980, Possible mechanisms of demethylation of 14a-methyl sterols in cholesterol biosynthesis, J. Am. Chem. Soc. 102: 6599–6601.Google Scholar
  250. 250.
    Gibbons, G. F., Pullinger, C. R., and Mitropoulos, K. A., 1979, Studies on the mechanism of lanosterol 14a-demethylation: A requirement for two distinct types of mixedfunction-oxidase systems, Biochem. J. 183: 309–315.PubMedGoogle Scholar
  251. 251.
    Hansson, R., and Wikvall, K., 1982, Hydroxylations in biosynthesis of bile acids: Cytochrome P-450 LM4 and 12a-hydroxylation of 513-cholestane-3a,7a-diol, Eur. J. Biochem. 125: 423–429.PubMedGoogle Scholar
  252. 252.
    Meigs, R. A., and Ryan, K. J., 1971, Enzymatic aromatization of steroids. I. Effects of oxygen and carbon monoxide on the intermediate steps of estrogen biosynthesis, J. Biol. Chem. 246: 83–87.PubMedGoogle Scholar
  253. 253.
    Zachariah, P. K., and Juchau, M. R., 1975, Interactions of steroids with human placental cytochrome P-450 in the presence of carbon monoxide, Life Sci. 16: 1689–1692.PubMedGoogle Scholar
  254. 254.
    Yoshida, Y., and Aoyama, Y., 1984, Yeast cytochrome P-450 catalyzing lanosterol 14a-demethylation. I. Purification and spectral properties, J. Biol. Chem. 259: 1655–1660.PubMedGoogle Scholar
  255. 255.
    Aoyama, Y., Yoshida, Y., and Sato, R., 1984, Yeast cytochrome P-450 catalyzing lanosterol 14a-demethylation. II. Lanosterol metabolism by purified P-45014DM and by intact microsomes, J. Biol. Chem. 259: 1661–1666.PubMedGoogle Scholar
  256. 256.
    Trzaskos, J. M., Bowen, W. D., Shafiee, A., Fischer, R. T., and Gaylor, J. L., 1984, Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis: Microsomal electron transport and C-32 demethylation, J. Biol. Chem. 259: 13402–13412.PubMedGoogle Scholar
  257. 257.
    Ramm, P. J., and Caspi, E., 1969, The stereochemistry of tritium at carbon atoms I, 7, and 15 in cholesterol derived from (3R,2R)-(2–3H)-mevalonic acid, J. Biol. Chem. 244: 6064–6073.PubMedGoogle Scholar
  258. 258.
    Akhtar, M., Rahimtula, A. D., Watkinson, I. A., Wilton, D. C., and Munday, K. A., 1969, The status of C-6, C-7, C-15, and C-16 hydrogen atoms in cholesterol biosynthesis, Eur. J. Biochem. 9: 107–111.PubMedGoogle Scholar
  259. 259.
    Spike, T. E., Wang, A. H.-J., Paul, I. C., and Schroepfer, G. J., 1974, Structure of a potential intermediate in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1974: 477–478.Google Scholar
  260. 260.
    Ullrich, V., Castle, L., and Weber, P., 1981, Spectral evidence for the cytochrome P450 nature of prostacyclin synthetase, Biochem. Pharmacol. 30: 2033–2036.PubMedGoogle Scholar
  261. 261.
    Graf, H., Ruf, H. H., and Ullrich, V., 1983, Prostacyclin synthase, a cytochrome P450 enzyme, Angew. Chem. Int. Ed. Engl. 22: 487–488.Google Scholar
  262. 262.
    Haurand, M., and Ullrich, V., 1982, Isolation and characterization of thromboxane synthase as a cytochrome P-450 enzyme, Hoppe-Seylers Z. Naturforsch. 363: 972.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Paul R. Ortiz de Montellano
    • 1
  1. 1.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations