Advertisement

Cytochrome P-450 Organization and Membrane Interactions

  • Magnus Ingelman-Sundberg

Abstract

The components of the microsomal hydroxylase system, as well as mitochondrial cytochromes P-450, are integral membrane proteins deeply embedded in the membrane matrix. Consequently, the properties of these protein components and the rates and specificities of the reactions they catalyze, will be influenced by the nature of the other membrane constituents, in particular the phospholipids. The major physical properties of the membrane matrix of importance in this respect are the fluidity, which influences the lateral and rotational mobilities of the protein components, and the membrane charge, which determines the interaction with ionic groups on the proteins. The membrane matrix also provides a hydrophobic environment for the P-450 enzymes, which mostly utilize lipophilic substrates. The membrane thus constitutes a reservoir for the substrates of P-450 and the membrane composition may therefore influence the type of substrate-P-450 interactions that occur.

Keywords

Lateral Diffusion Microsomal Membrane Membrane Interaction Rabbit Liver Phospholipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glaumann, H., and Dallner, G., 1968. Lipid composition and turnover of rough and smooth microsomal membranes in rat liver, J. Lipid Res. 9: 720–729.PubMedGoogle Scholar
  2. 2.
    Blackburn, G. R., Bornens, M., and Kasper, C. B., 1976. Characterization of the membrane matrix derived from the microsomal fraction of rat hepatocytes. Biochim. Biophys. Acta 436: 387–398.PubMedCrossRefGoogle Scholar
  3. 3.
    Manganiello, V. C., and Phillips, A. H., 1965, The relationship between ribosomes and the endoplasmic reticulum during protein synthesis, J. Biol. Chem. 240: 3951–3959.PubMedGoogle Scholar
  4. 4.
    Lee, T.-C., and Snyder, F., 1973. Phospholipid metabolism in rat liver endoplasmic reticulum: Structural analyses, turnover studies and enzymic activities, Biochim. Biophys. Acta 291: 71–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Morin, F., Tay. S., and Simpkins, H., 1972. A comparative study of the molecular structures of the plasma membranes and the smooth and the rough endoplasmic-reticulum membranes from rat liver, Biochem. J. 129: 781–788.Google Scholar
  6. 6.
    Dallner, G., Siekevitz, P., and Palade, G. E., 1966. Biogenesis of endoplasmic reticulum membranes. Il. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte, J. Cell Biol. 30: 97–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Wade, A. E., and Norred, W. P., 1976, Effect of dietary lipid on drug-metabolizing enzymes, Fed. Proc. 35: 2475–2479.PubMedGoogle Scholar
  8. 8.
    Lu, A. Y. H., and Coon, M. J., 1968, Role of hemoprotein P-450 in fatty acid w-hydroxylation in a soluble enzyme system from liver microsomes, J. Biol. Chem. 243: 1331–1332.PubMedGoogle Scholar
  9. 9.
    Lu, A. Y. H., Junk, K. W., and Coon, M. J., 1969, Resolution of the cytochrome P450-containing w-hydroxylation system of liver microsomes into three components, J. Biol. Chem. 244: 3714–3721.PubMedGoogle Scholar
  10. 10.
    Lu, A. Y. H., Strobel, H. W., and Coon, M. J., 1969, Hydroxylation of benzphetamine and other drugs by a solubilized form of cytochrome P-450 from liver microsomes: Lipid requirement for drug demethylation, Biochem. Biophys. Res. Commun. 36: 545–551.PubMedCrossRefGoogle Scholar
  11. 11.
    Lu, A. Y. H., Strobel, H. W., and Coon, M. J., 1970, Properties of a solubilized form of the cytochrome P-450 containing mixed-function oxidase of liver microsomes, Mol. Pharmacol. 6: 213–220.PubMedGoogle Scholar
  12. 12.
    Strobel, H. W., Lu, A. Y. H., Heidema, J., and Coon, M. J., 1970, Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation, J. Biol. Chem. 245: 4851–4854.PubMedGoogle Scholar
  13. 13.
    Lu, A. Y. H., and West, S. B., 1978, Reconstituted mammalian mixed function oxidases: Requirements, specificities and other properties, Pharmacol. Ther. 2: 337–358.Google Scholar
  14. 14.
    Trudell, J. R., and Bösterling, B., 1983, Interactions of cytochrome P-450 with phospholipids and proteins in the endoplasmic reticulum, in: Membrane Fluidity in Biology, Volume I ( R. C. Aloia, ed.), Academic Press, New York, pp. 201–233.Google Scholar
  15. 15.
    Lu, A. Y. H., and Levin, W., 1974, The resolution and reconstitution of the liver microsomal hydroxylation system, Biochim. Biophys. Acta 344: 205–240.PubMedCrossRefGoogle Scholar
  16. 16.
    Miwa, G. T., and Lu, A. Y. H., 1981, Studies on the stimulation of cytochrome P450-dependent monooxygenase activity by ‘dilauroylphosphatidylcholine, Arch. Biochem. Biophys. 211: 454–458.PubMedCrossRefGoogle Scholar
  17. 17.
    Bösterling, B., Trudell, J. R., Trevor, A. J., and Bendix, M., 1982, Lipid—protein interactions as determinants of activation or inhibition by cytochrome b5 of cytochrome P-450-mediated oxidations, J. Biol. Chem. 257: 4375–4380.PubMedGoogle Scholar
  18. 18.
    Oprian, D. D., Vatsis, K. P., and Coon, M. J., 1979, Kinetics of reduction of cytochrome P-450 LM4 in a reconstituted liver microsomal enzyme system, J. Biol. Chem. 254: 8895–8902.PubMedGoogle Scholar
  19. 19.
    Dieter, H. H., and Johnson, E. F., 1982, Functional and structural polymorphism of rabbit microsomal cytochrome P-450 form 3b, J. Biol. Chem. 257: 9315–9323.PubMedGoogle Scholar
  20. 20.
    Bonfils, C., Balny, C., and Maurel, P., 1981, Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P-450 LM2, J. Biol. Chem. 256: 9457–9465.PubMedGoogle Scholar
  21. 21.
    Nebert, D. W., Heidema, J. K., Strobel, H. W., and Coon, M. J., 1973, Genetic expression of aryl hydrocarbon hydroxylase induction. Genetic specificity resides in the fraction containing cytochrome P448 and P450, J. Biol. Chem. 248: 7631–7636.PubMedGoogle Scholar
  22. 22.
    Duppel, W., Lebeault, J.-M., and Coon, M. J., 1973, Properties of a yeast cytochrome P-450-containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes, and drugs, Eur. J. Biochem. 36: 583–592.PubMedCrossRefGoogle Scholar
  23. 23.
    Ryan, D. E., lida, S., Wood, A. W., Thomas, P. E., Lieber, C. S., and Levin, W., 1984, Characterization of three highly purified cytochromes P-450 from hepatic microsomes of adult male rats, J. Biol. Chem. 259: 1239–1250.PubMedGoogle Scholar
  24. 24.
    Saito, T., and Strobel, H. W., 1981, Purification to homogeneity and characterization of a form of cytochrome P-450 with high specificity for benzo(a)pyrene from 13-naphthoflavone-pretreated rat liver microsomes, J. Biol. Chem. 256: 984–988.PubMedGoogle Scholar
  25. 25.
    Coon, M. J., 1978, Reconstitution of the cytochrome P-450-containing mixed function oxidase system of liver microsomes, Methods Enzymol. 52: 200–206.Google Scholar
  26. 26.
    Mabrey, S., and Sturtevant, J. M., 1978, High sensitivity differential scanning calorimetry in study of biomembranes and related model systems, Methods Membr. Biol. 9: 237–274.CrossRefGoogle Scholar
  27. 27.
    Coon, M. J., Haugen, D. A., Guengerich, F. P., Vermilion, J. L., and Dean, W. L., 1976, Liver microsomal membranes: Reconstitution of the hydroxylation system containing cytochrome P-450, in: The Structural Basis of Membrane Function ( Y. Hatefi and L. Djavadi-Ohaniance, eds.), Academic Press, New York, pp. 409–427.Google Scholar
  28. 28.
    Autor, A. P., Kaschnitz, R. M., Heidema, J. K., and Coon, M. J., 1973, Sedimentation and other properties of the reconstituted liver microsomal mixed-function oxidase system containing cytochrome P-450, reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, and phosphatidylcholine, Mol. Pharmacol. 9: 93–104.PubMedGoogle Scholar
  29. 29.
    Lu, A. Y. H., Levin, W., and Kuntzman, R., 1974, Reconstituted liver microsomal enzyme system that hydroxylates drugs. other foreign compounds anu endogenous substrates. VII. Stimulation of benzphetamine N-demethylation by lipid and detergent, Biochem. Biophys. Res. Commun. 60: 266–272.PubMedCrossRefGoogle Scholar
  30. 30.
    Wagner, S. L., Dean, W. L., and Gray, R. D., 1984, Effect of a zwitterionic detergent on the state of aggregation and catalytic activity of cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase, J. Biol. Chem. 259: 2390–2395.PubMedGoogle Scholar
  31. 31.
    Ingelman-Sundberg, M., 1977, Protein—lipid interactions in the liver microsomal hydroxylase system, in: Microsomes and Drug Oxidations ( V. Ullrich, I. Roots, A. Hildebrandt, and R. W. Estabrook, eds.), Pergamon Press, Elmsford, N.Y., pp. 67–75.Google Scholar
  32. 32.
    Dean, W. L., and Gray, R. D., 1982, Relationship between state of aggregation and catalytic activity for cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase, J. Biol. Chem. 257: 14679–14685.PubMedGoogle Scholar
  33. 33.
    Dean, W. L., and Gray, R. D., 1982, Hydrodynamic properties of monomeric cytochromes P-450LM2 and P-450LM4 in n-octylglucoside solution, Biochem. Biophys. Res. Commun. 107: 265–271.PubMedCrossRefGoogle Scholar
  34. 34.
    Imai, Y., 1976, The use of 8-aminooctyl Sepharose for the separation of some components of the hepatic microsomal electron transfer system, J. Biochem. 80: 267–276.PubMedGoogle Scholar
  35. 35.
    Sugiyama, T., Miki, N., and Yamano, T., 1979, The obligatory requirement of cytochrome b 5 in the p-nitroanisole 0-demethylation reaction catalyzed by cytochrome P450 with a high affinity for cytochrome b5, Biochem. Biophys. Res. Commun. 90: 715–720.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuwahara, S.-I., and Omura, T., 1980. Different requirement for cytochrome b5 in NADPH-supported 0-deethylation of p-nitrophenetole catalyzed by two types of microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 96: 1562–1568.PubMedCrossRefGoogle Scholar
  37. 37.
    Kominami, S., Hara, H., Ogishima, T., and Takemori, S., 1984, Interaction between cytochrome P-450 (P-450c21) and NADPH-cytochrome P-450 reductase from adrenocortical microsomes in a reconstituted system, J. Biol. Chem. 259: 2991–2999.PubMedGoogle Scholar
  38. 38.
    Nakajin, S., Ishii, Y., Shinoda, M., and Shikita, M., 1979, Binding of Triton X-100 to purified cytochrome P-450scc and enhancement of the cholesterol side chain cleavage activity, Biochem. Biophys. Res. Commun. 87: 524–531.PubMedCrossRefGoogle Scholar
  39. 39.
    Takikawa, O., Gomi, T., Suhara, K., Itagaki, E., Takemori, S., and Katagiri, M., 1978, Properties of adrenal cytochrome P-450 (P-450scc) for the side chain cleavage of cholesterol, Arch. Biochem. Biophys. 190: 300–306.PubMedCrossRefGoogle Scholar
  40. 40.
    Kimura, T., 1981, ACTH stimulation on cholesterol side chain cleavage activity of adrenocortical mitochondria: Transfer of stimulus from plasma membrane to mitochondria, Mol. Cell. Biochem. 36: 105–122.PubMedCrossRefGoogle Scholar
  41. 41.
    van der Hoeven, T. A., and Coon, M. J., 1974, Preparation and properties of partially purified cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase from rabbit liver microsomes, J. Biol. Chem. 249: 63026310.Google Scholar
  42. 42.
    Imai, Y., 1979, Reconstituted 0-dealkylase systems containing various forms of liver microsomal cytochrome P-450, J. Biochem. 86: 1697–1707.PubMedGoogle Scholar
  43. 43.
    Imai, Y., 1981, The roles of cytochrome bs in reconstituted monooxygenase systems containing various forms of hepatic microsomal cytochrome P-450, J. Biochem. 89: 351–362.PubMedGoogle Scholar
  44. 44.
    Waxman, D. J., and Walsh, C., 1983, Cytochrome P-450 isozyme l from phenobarbital-induced rat liver: Purification, characterization and interactions with metyrapone and cytochrome b5, Biochemistry 22: 4846–4855.PubMedCrossRefGoogle Scholar
  45. 45.
    Imai, Y., and Sato, R., 1977, The roles of cytochrome bs in a reconstituted N-demethylase system containing cytochrome P-450, Biochem. Biophys. Res. Commun. 75: 420–426.PubMedCrossRefGoogle Scholar
  46. 46.
    Müller-Enoch, D., Churchill, P., Fleischer, S., and Guengerich, F. P., 1984, Interaction of liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase in the presence and absence of lipid, J. Biol. Chem., 259: 8174–8182.PubMedGoogle Scholar
  47. 47.
    Hauser, H., Phillips, M. C., and Stubbss, M., 1972, Ion permeability of phospholipid bilayers, Nature 239: 342–344.PubMedCrossRefGoogle Scholar
  48. 48.
    Bangham, A. D., Hill, M. W., and Miller, N. G. A., 1974, Preparation and use of liposomes as models of biological membranes, Methods Membr. Biol. 1: 1–68.CrossRefGoogle Scholar
  49. 49.
    Racker, E., 1972, Reconstitution of a calcium pump with phospholipids and a purified Ca“-adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 247: 8198–8200.PubMedGoogle Scholar
  50. 50.
    Brunner, J., Skrabal, P., and Hauser, H., 1976, Single bilayer vesicles prepared without sonication: Physico-chemical properties, Biochim. Biophys. Acta 455: 322–331.PubMedCrossRefGoogle Scholar
  51. 51.
    Eytan, G. D., Matheson, M. J., and Racker, E., 1976, Incorporation of mitochondria) membrane proteins into liposomes containing acidic phospholipids, J. Biol. Chem. 251: 6831–6837.PubMedGoogle Scholar
  52. 52.
    Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32P-adenosine triphosphate exchange, J. Biol. Chem. 246: 5477–5487.Google Scholar
  53. 53.
    Racker, E., and Kandrach, A., 1973, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation, J. Biol. Chem. 248: 5841–5847.PubMedGoogle Scholar
  54. 54.
    Kagawa, Y., Kandrach, A., and Racker, E., 1973, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXVI. Specificity of phospholipids required for energy transfer reactions, J. Biol. Chem. 248: 676–684.PubMedGoogle Scholar
  55. 55.
    Brunner, J., Hauser, H., and Semenza, G., 1978, Single bilayer lipid—protein vesicles formed from phosphatidylcholine and small intestinal sucrase isomaltase, J. Biol. Chem. 253: 7538–7546.PubMedGoogle Scholar
  56. 56.
    Ingelman-Sundberg, M., and Glaumann, H., 1977, Reconstitution of the liver microsomal hydroxylase system into liposomes, FEBS Lett. 78: 72–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Hall, P. F., Watanuki, M., and Hamkalo, B. A., 1979, Adrenocortical cytochrome P450 side chain cleavage: Preparation of membrane-bound side chain cleavage system from purified components, J. Biol. Chem. 254: 547–552.PubMedGoogle Scholar
  58. 58.
    Yamakura, F., Kido, T., and Kimura, T., 1981, Characterization of cytochrome P4505cc-containing liposomes, Biochim. Biophys. Acta 649: 343–354.PubMedCrossRefGoogle Scholar
  59. 59.
    Kisselev, P. A., Smettan, G., Kissel, M. A., Elbe, B., Zirwer, D., Gast, K., Ruckpaul, K., and Akhrem, A. A., 1984, Reconstitution of the liver microsomal monooxygenase system in liposomes from dimyristoylphosphatidylcholine, Biomed. Biochim. Acta 43: 281–293.PubMedGoogle Scholar
  60. 60.
    Noshiro, M., Ruf, H. H., and Ullrich, V., 1980, The role of NADPH-cytochrome P450 reductase and cytochrome b5 in the transfer of electrons from NADPH and NADH to cytochrome P-450, in: Biochemistry, Biophysics and Regulation of Cytochrome P450 ( J.-A. Gustafsson, J. Carlstedt-Duke, A. Mode, and J. Rafter, eds.), Elsevier/ North-Holland, Amsterdam, pp. 351–354.Google Scholar
  61. 61.
    Hlavica, P., 1984, On the function of cytochrome b5 in the cytochrome P-450-dependent oxygenase system, Arch. Biochem. Biophys. 228: 600–608.PubMedCrossRefGoogle Scholar
  62. 62.
    Schwarz, D., Pirrwitz, J., Coon, M. J., and Ruckpaul, K., 1982, Mobility and clusterlike organization of liposomal cytochrome P-450 LM2: Saturation transfer EPR studies, Acta Biol. Med. Ger. 41: 425–430.PubMedGoogle Scholar
  63. 63.
    Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1983, Rotation of cytochrome P-450: Complex formation of cytochrome P-450 with NADPH-cytochrome P-450 reductase in liposomes demonstrated by combining protein rotation with antibody-induced crosslinking, J. Biol. Chem. 258: 8588–8594.PubMedGoogle Scholar
  64. 64.
    Kawato, S. Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C., 1982, Rotation of cytochrome P-450. I. Investigations of protein-protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes, J. Biol. Chem. 257: 7023–7029.Google Scholar
  65. 65.
    Gut, J., Richter, C., Cherry, R. J., Winterhalter, K. H., and Kawato, S., 1982, Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPHcytochrome P-450 reductase in phospholipid vesicles, J. Biol. Chem. 257: 7030–7036.PubMedGoogle Scholar
  66. 66.
    Taniguchi, H., Imai, Y., lyanagi, T., and Sato, R., 1979, Interaction between NADPHcytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles, Biochim. Biophys. Acta 550: 341–356.PubMedCrossRefGoogle Scholar
  67. 67.
    Bösterling, B., Trudell, J. R., and Galla. H. J., 1981, Phospholipid interactions with cytochrome P-450 in reconstituted vesicles: Preference for negatively-charged phosphatidic acid, Biochim. Biophys. Acta. 643: 547–556.PubMedCrossRefGoogle Scholar
  68. 68.
    Nisimoto, Y., Kinosita, K., Jr., Ikegami, A., Kawai, N., Ichihara, I., and Shibata, Y., 1983, Possible association of NADPH-cytochrome P-450 reductase and cytochrome P-450 in reconstituted phospholipid vesicles, Biochemistry 22: 3586–3594.PubMedCrossRefGoogle Scholar
  69. 69.
    Schwartz, D., Gast, K., Meyer, H. W., Lachmann, U., Coon, M. J., and Ruckpaul, K., 1984, Incorporation of the cytochrome P-450 monooxygenase system into large unilamellar liposomes using octylglucoside, especially for measurements of protein diffusion in membranes, Biochem. Biophys. Res. Commun. 121: 118–125.CrossRefGoogle Scholar
  70. 70.
    Bösterling, B., Stier, A., Hildebrandt, A. G., Dawson, J. H., and Trudell, J. R., 1979, Reconstitution of cytochrome P-450 and cytochrome P-450 reductase into phosphatidylcholine-phosphatidylethanolamine bilayers: Characterization of structure and metabolic activity, Mol. Pharmacol. 16: 332–342.PubMedGoogle Scholar
  71. 71.
    Miwa, G. T., and Lu, A. Y. H., 1984, The association of cytochrome P-450 and NADPH-cytochrome P-450 reductase in phospholipid membranes, Arch. Biochem. Biophys. 234: 161–166.PubMedCrossRefGoogle Scholar
  72. 72.
    Pyerin, W., Taniguchi, H., Stier, A., Oesch, F., and Wolf, C. R., 1984, Phosphorylation of rabbit liver cytochrome P-450 LM2 and its effect on monooxygenase activity, Biochem. Biophys. Res. Commun. 122: 620–626.PubMedCrossRefGoogle Scholar
  73. 73.
    Greinert, R., Finch, S. A. E., and Stier, A., 1982, Cytochrome P-450 rotamers control mixed-function oxygenation in reconstituted membranes: Rotational diffusion studied by delayed fluorescence depolarization, Xenobiotica 12: 717–726.PubMedCrossRefGoogle Scholar
  74. 74.
    Akhrem, A. A., Andrianov, V. T., Bokut, S. B., Luka, Z. A., Kissel, M. A., Skornyakova, T. G., and Kisselev, P. A., 1982, Thermotropic behaviour of phospholipid vesicles reconstituted with rat liver microsomal cytochrome P-450, Biochim. Biophys. Acta 692: 287–295.PubMedCrossRefGoogle Scholar
  75. 75.
    Tuckey, R. C., and Kamin, H., 1982, Kinetics of the incorporation of adrenal cytochrome P-450 x „ into phosphatidylcholine vesicles, J. Biol. Chem. 257: 2887–2893.PubMedGoogle Scholar
  76. 76.
    Baron, C., and Thompson, T. E., 1975, Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoyl phosphatidylcholine, Biochim. Biophys. Acta 382: 276–285.PubMedCrossRefGoogle Scholar
  77. 77.
    Helenius, A., Fries, E., and Kartenbeck, J., 1977, Reconstitution of Semliki forest virus membrane, J. Cell Biol. 75: 866–880.PubMedCrossRefGoogle Scholar
  78. 78.
    Ingelman-Sundberg, M., and Glaumann, H., 1980, Incorporation of purified components of the rabbit liver microsomal hydroxylase system into phospholipid vesicles, Biochim. Biophys. Acta 599: 417–435.PubMedCrossRefGoogle Scholar
  79. 79.
    Leto, T. L., and Holloway, P. W., 1979, Mechanism of cytochrome IN binding to phosphatidylcholine vesicles, J. Biol. Chem. 254: 5015–5019.PubMedGoogle Scholar
  80. 80.
    Seybert, D. W., Lancaster, J. R., Jr., Lambeth, J. D., and Kamin, H., 1979, Participation of the membrane in the side chain cleavage of cholesterol: Reconstitution of cytochrome P-450,„ into phospholipid vesicles, J. Biol. Chem. 254: 12088–12098.PubMedGoogle Scholar
  81. 81.
    Lambeth, J. D., Seybert, D. W., Lancaster, J. R., Jr., Salerno, J. C., and Kamin, H., 1982, Steroidogenic electron transport in adrenal cortex mitochondria, Mol. Cell. Biochem. 45: 13–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Kowluru, R. A., George, R., and Jefcoate, C. R., 1983, Polyphosphoinositide activation of cholesterol side chain cleavage with purified cytochrome P-450, J. Biol. Chem. 258: 8053–8059.PubMedGoogle Scholar
  83. 83.
    Stier, A., Finch, S. A. E., and Bösterling, B., 1978, Non-lamellar structure in rabbit liver micrososmal membranes: A 31P-NMR study, FEBS Lett. 91: 109–112.PubMedCrossRefGoogle Scholar
  84. 84.
    Estabrook, R. W., Franklin, M. R., Cohen, B., Shigamatzu, A., and Hildebrandt, A. G., 1971, Biochemical and genetic factors influencing drug metabolism: Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control, Metabolism 20: 187–199.PubMedCrossRefGoogle Scholar
  85. 85.
    Blanck, J., Smettan, G., Ristau, O., Ingelman-Sundberg, M., and Ruckpaul, K., 1984, Mechanism of rate control of the NADPH-dependent reduction of cytochrome P-450 by lipids in reconstituted phospholipid vesicles, Eur. J. Biochem. 144: 509–513.PubMedCrossRefGoogle Scholar
  86. 86.
    Peterson, J. A., Ebel, R. E., O’Keeffe, D. H., Matsubara, T., and Estabrook, R. W., 1976, Temperature dependence of cytochrome P-450 reduction: A model for NADPHcytochrome P-450 reductase: cytochrome P-450 interaction, J. Biol. Chem. 251: 4010–4016.PubMedGoogle Scholar
  87. 87.
    Lambeth, J. D., Seybert, D. W., and Kamin, H., 1980, Phospholipid vesicle-reconstituted cytochrome P-450,„: Mutually facilitated binding of cholesterol and adrenodoxin, J. Biol. Chem. 255: 138–143.PubMedGoogle Scholar
  88. 88.
    Lambeth, J. D., Kamin, H., and Seybert, D. W., 1980, Phosphatidylcholine vesicle reconstituted cytochrome P-450: Role of the membrane in control of activity and spin state of the cytochrome, J. Biol. Chem. 255: 8282–8288.PubMedGoogle Scholar
  89. 89.
    DePierre, J. W., and Ernster, L., 1977, Enzyme topology of intracellular membranes, Annu. Rev. Biochem. 46: 201–262.PubMedCrossRefGoogle Scholar
  90. 90.
    Seidegârd, J., Moron, M. S., Eriksson, L. C., and DePierre, J. W., 1978, The topology of expoxide hydratase and benzpyrene monooxygenase in the endoplasmic reticulum of rat liver, Biochim. Biophys. Acta 543: 29–40.PubMedCrossRefGoogle Scholar
  91. 91.
    Morimoto, T., Matsuura, S., Sasaki, S., Tashiro, Y., and Omura, T., 1976, Immunochemical and immunoelectron microscope studies on localization of NADPH-cytochrome c reductase on rat liver microsomes, J. Cell Biol. 68: 189–201.PubMedCrossRefGoogle Scholar
  92. 92.
    Matsuura, S., Fujii-Kuriyama, Y., and Tashiro, Y., 1978, Immunoelectron microscope localization of cytochrome P-450 on microsomes and other membrane structures of rat hepatocytes, J. Cell Biol. 78: 504–519.CrossRefGoogle Scholar
  93. 93.
    Cooper, M. B., Craft, J. A., Estall, M. R., and Rabin, B. R., 1980, Asymmetric distribution of cytochrome P-450 and NADPH-cytochrome P-450 (cytochrome c) reductase in vesicles from smooth endoplasmic reticulum of rat liver, Biochem. J. 190: 737–746.PubMedGoogle Scholar
  94. 94.
    Nilsson, O. S., DePierre, J. W., and Dallner, G., 1978, Investigation of the transverse topology of the microsomal membrane using combinations of proteases and the non-penetrating reagent diazobenzene sulfonate, Biochim. Biophys. Acta 511: 93–104.PubMedCrossRefGoogle Scholar
  95. 95.
    Nilsson, O. S., and Dallner, G., 1977, Enzyme and phospholipid asymmetry in liver microsomal membranes, J. Cell. Biol. 72: 568–583.PubMedCrossRefGoogle Scholar
  96. 96.
    Thomas, P. E., Lu, A. Y. H., West, S. B., Ryan, D., Miwa, G. T., and Levin, W., 1977, Accessibility of cytochrome P450 in microsomal membranes: Inhibition of metabolism by antibodies to cytochrome P450, Mol. Pharmacol. 13: 819–831.PubMedGoogle Scholar
  97. 97.
    Fleming, P. J., Dailey, H. A., Corcoran, D., and Strittmatter, P., 1978, The primary structure of the nonpolar segment of bovine cytochrome b5, J. Biol. Chem. 253: 5369–5372.PubMedGoogle Scholar
  98. 98.
    Ozols, J., and Gerard, C., 1977, Covalent structure of the membranous segment of horse cytochrome b5, J. Biol. Chem. 252: 8549–8553.PubMedGoogle Scholar
  99. 99.
    Enoch, H. G., Fleming, P. J., and Strittmatter, P., 1979, The binding of cytochrome b5 to phospholipid vesicles and biological membranes: Effect of orientation on inter-membrane transfer and digestion by carboxypeptidase Y, J. Biol. Chem. 254: 6483–6488.PubMedGoogle Scholar
  100. 100.
    Takagaki, Y., Gerber, G., Nikei, K., and Khorana, H. G., 1980, Amino acid sequence of the membranous segment of rabbit liver cytochrome b5: Methodology for separation of hydrophobic peptides, J. Biol. Chem. 255: 1536–1541.PubMedGoogle Scholar
  101. 101.
    Kondo, K., Takjima, S., Sato, R., and Narita, K., 1979, Primary structure of the membrane-binding segment of rabbit cytochrome b5, J. Biochem. 86: 1119–1128.PubMedGoogle Scholar
  102. 102.
    Ozols, J., and Gerard, C., 1977, Primary structure of the membranous segment of cytochrome b5, Proc. Natl. Acad. Sci. USA 74: 3725–3729.PubMedCrossRefGoogle Scholar
  103. 103.
    Bendzko, P., Usanov, S. A., Pfeil, W., and Ruckpaul, K., 1982, Role of the hydrophobic tail of cytochrome b5 in the interaction with cytochrome P-450 LM2, Acta Biol. Med. Ger. 41: K1 - K8.PubMedGoogle Scholar
  104. 104.
    Chiang, J. Y. L., 1981, Interaction of purified microsomal cytochrome P-450 with cytochrome b5, Arch. Biochem. Biophys. 211: 662–673.PubMedCrossRefGoogle Scholar
  105. 105.
    Dailey, H. A., and Strittmatter, P., 1978, Structural and functional properties of the membrane binding segment of cytochrome b5, J. Biol. Chem. 253: 8203–8209.PubMedGoogle Scholar
  106. 106.
    Prkrovsky, A., Mishin, V., Rivkind, N., and Lyakhovich, V., 1977, The binding of NADPH-cytochrome c reductase to rat liver microsomes, Biochem. Biophys. Res. Commun. 77: 912–917.CrossRefGoogle Scholar
  107. 107.
    Yang, C. S., Strickhart, F. S., and Kicha, L. P., 1978, Interaction between NADPHcytochrome P-450 reductase and hepatic microsomes, Biochim, Biophys. Acta 509: 326337.Google Scholar
  108. 108.
    Gum, J. R., and Strobel, H. W., 1979, Purified NADPH cytochrome P-450 reductase, J. Biol. Chem. 254: 4177–4185.PubMedGoogle Scholar
  109. 109.
    Vermilion, J. L., and Coon, M. J., 1978, Purified liver microsomal NADPH-cytochrome P-450 reductase: Spectral characterization of oxidation—reduction states, J. Biol. Chem. 253: 2694–2704.PubMedGoogle Scholar
  110. 110.
    Coon, M. J., Strobel, H. W., and Boyer, R. F., 1973, On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450, Drug Metab. Dispos. 1: 92–97.PubMedGoogle Scholar
  111. 111.
    Masters, B. S. S., Prough, R. A., and Kamin, H., 1975, Properties of the stable aerobic and anaerobic half-reduced states of NADPH cytochrome c reductase, Biochemistry 194: 607–613.CrossRefGoogle Scholar
  112. 112.
    Mayer, R. T., and Durrant, J. L., 1979, Preparation of homogenous NADPH cytochrome c (P-450) reductase from house flies using affinity chromatography techniques, J. Biol. Chem. 254: 756–761.PubMedGoogle Scholar
  113. 113.
    Gum, J. R., and Strobel, H. W., 1981, Isolation of the membrane binding peptide of NADPH-cytochrome P-450 reductase, J. Biol. Chem. 256: 7478–7486.PubMedGoogle Scholar
  114. 114.
    Black, S. D., French, J. S., Williams, C. H., Jr., and Coon, M. J., 1979, Role of a hydrophobic polypeptide in the N-terminal region of NADPH cytochrome P-450 reductase in complex formation with P-450LM, Biochem. Biophys. Res. Commun. 91: 1528–1535.PubMedCrossRefGoogle Scholar
  115. 115.
    Black, S. D., and Coon, M. J., 1982, Structural features of liver microsomal NADPHcytochrome P-450 reductase: Hydrophobic domain, hydrophilic domain and connecting region, J. Biol. Chem. 257: 5929–5938.PubMedGoogle Scholar
  116. 116.
    Heinemann, F. S., and Ozols, J., 1983, The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450, J. Biol. Chem. 258: 4195–4201.PubMedGoogle Scholar
  117. 117.
    Tan, G. E., Black, S. D:, Fujita, V. S., and Coon, M. J., 1983, Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. USA 80: 6552–6556.Google Scholar
  118. 118.
    Heinemann, F. S., and Ozols, J., 1982, The covalent structure of rabbit phenobarbital-induced cytochrome P-450, J. Biol. Chem. 257: 14988–14999.PubMedGoogle Scholar
  119. 119.
    Kimura, S., Gonzalez, F. J., and Nebert, D. W., 1984, The murine Ah locus: Comparison of the complete cytochrome P1–450 and P1–450 cDNA nucleotide and aminoacid sequences, J. Biol. Chem. 259: 10705–10713.PubMedGoogle Scholar
  120. 120.
    Leighton, J. K., DeBrunner-Vossbrinck, B. A., and Kemper, B., 1984, Isolation and sequence analysis of three cloned cDNAs for rabbit liver proteins that are related to rabbit cytochrome P-450 (form 2), the major phenobarbital-inducible form, Biochemistry 23: 204–210.PubMedCrossRefGoogle Scholar
  121. 121.
    Rich, P. R., Tiede, D. M., and Bonner, W. D., Jr., 1979, Studies on the molecular organization of cytochromes P-450 and bs in the microsomal membrane, Biochim. Biophys. Acta 546: 307–315.PubMedCrossRefGoogle Scholar
  122. 122.
    Blum, H., Leigh, J. S., Salerno, J. C., and Ohnishi, T., 1978, The orientation of bovine adrenal cortex cytochrome P-450 in submitochondrial particle mutlilayers, Arch. Biochem. Biophys. 187: 153–157.PubMedCrossRefGoogle Scholar
  123. 123.
    Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559: 289–327.PubMedCrossRefGoogle Scholar
  124. 124.
    Vaz, W. L. C., Goodsaid-Zalduondo, F., and Jacobson, K., 1984, Lateral diffusion of lipids and proteins in bilayer membranes, FEBS Lett. 174: 199–207.CrossRefGoogle Scholar
  125. 125.
    Vaz, W. L. C., Derzko, Z. I., and Jacobson, K. A., 1982, Photobleaching measurements of the lateral diffusion of lipids and proteins in artificial phospholipid bilayer membranes, in: Membrane Reconstitution ( G. Poste and G. I. Nicholson, eds.), Elsevier, Amsterdam, pp. 83–136.Google Scholar
  126. 126.
    Yang, C. S., 1977, Minireview: The organization and interaction of monooxygenase enzymes in the microsomal membrane, Life Sci. 21: 1047–1058.PubMedCrossRefGoogle Scholar
  127. 127.
    Poo, M., and Cone, R. A., 1974, Lateral diffusion of rhodopsin in the photoreceptor membrane, Nature 247: 438–441.PubMedCrossRefGoogle Scholar
  128. 128.
    Liebman, P. A., and Entine, G., 1974, Lateral diffusion of visual pigment in photoreceptor disk membranes, Science 185: 457–459.PubMedCrossRefGoogle Scholar
  129. 129.
    Schlessinger, J., Koppel, D. E., Axelrod, D., Jacobson, K., Webb, W. W., and Elson, E. L., 1976, Lateral transport on cell membranes: Mobility of concanavalin A receptors on myoblasts, Proc. Natl. Acad. Sci. USA 73: 2409–2413.PubMedCrossRefGoogle Scholar
  130. 130.
    Axelrod, D., Ravdin, P., Koppel, D. E., Schlessinger, J., Webb, W. W., Elson, E. L., and Podleski, T. R., 1976, Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers, Proc. Natl. Acad. Sci. USA 73: 4594–4598.PubMedCrossRefGoogle Scholar
  131. 131.
    Schlessinger, J., Webb, W. W., and Elson, E. L., 1976, Lateral motion and valence of Fc receptors on rat peritoneal mast cells, Nature 264: 550–552.PubMedCrossRefGoogle Scholar
  132. 132.
    Mabrey, S., Powis, G., Schenkman, J. B., and Tritton, T. R., 1977, Calorimetric study of microsomal membrane, J. Biol. Chem. 252: 2929–2933.PubMedGoogle Scholar
  133. 133.
    Stier, A., and Sackmann, E., 1973, Spin labels as enzyme substrates: Heterogenous lipid distribution in liver microsomal membranes, Biochim. Biophys. Acta 311: 400–408.PubMedCrossRefGoogle Scholar
  134. 134.
    Wu, E.-S., Jacobson, K., Szoka, F., and Portis, A., Jr., 1978, Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1, 3-diazole gramicidin S, in phospholipid multibilayers, Biochemistry 17: 5543–5550.PubMedCrossRefGoogle Scholar
  135. 135.
    Tsong, T. Y., and Yang, C. S., 1978, Rapid conformational changes of cytochrome P450: Effector of dimyristoyl lecithin, Proc. Natl. Acad. Sci. USA 75: 5955–5959.PubMedCrossRefGoogle Scholar
  136. 136.
    Rich, P. R., Tiede, D. M., and Bonner, W. D., Jr., 1979, Studies on the molecular organization of cytochromes P-450 and b5 in the microsomal membrane, Biochim. Biophys. Acta 546: 307–315.PubMedCrossRefGoogle Scholar
  137. 137.
    Fahey, P. F., and Webb, W. W., 1978, Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry 17: 3046–3053.PubMedCrossRefGoogle Scholar
  138. 138.
    Wu, E.-S., and Yang, C. S., 1984, Lateral diffusion of cytochrome P-450 in phospholipid bilayers, Biochemistry 23: 28–33.PubMedCrossRefGoogle Scholar
  139. 139.
    Vaz, W. L. C., Jacobson, K., Wu, E.-S., and Derzko, Z., 1979, Lateral mobility of an amphipathic apolipoprotein, ApoC-III, bound to phosphatidylcholine bilayers with and without cholesterol, Proc. Natl. Acad. Sci. USA 76: 5645–5649.PubMedCrossRefGoogle Scholar
  140. 140.
    Saffman, P. G., and Delbrück, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA. 72: 3111–3113.PubMedCrossRefGoogle Scholar
  141. 141.
    Ingelman-Sundberg, M., Blanck, J., Smettan, G., and Ruckpaul, K., 1983, Reduction of cytochrome P-450 LM2 by NADPH in reconstituted phospholipid vesicles is dependent on membrane charge, Eur. J. Biochem. 134: 157–162.PubMedCrossRefGoogle Scholar
  142. 142.
    Taniguchi, H., Imai, Y., and Sato, R., 1984, Role of the electron transfer system in microsomal drug monooxygenase reaction catalyzed by cytochrome P-450, Arch. Biochem. Biophys. 232: 585–596.PubMedCrossRefGoogle Scholar
  143. 143.
    Werringloer, J., and Kawano, S., 1980, Cytochrome b5 and the integrated microsomal electron transport system, in: Microsomes, Drug Oxidations and Chemical Carcinogenesis, Volume 1 ( M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), Academic Press, New York, pp. 469–478.Google Scholar
  144. 144.
    Miwa, G. T., West, S. B., and Lu, A. Y. H., 1978, Studies on the rate limiting enzyme component in the microsomal monooxygenase system: Incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsomes, J. Biol. Chem. 253: 1921–1929.PubMedGoogle Scholar
  145. 145.
    Guengerich, F. P., 1983, Oxidation—reduction properties of rat liver cytochromes P450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems, Biochemistry 22: 2811–2820.PubMedCrossRefGoogle Scholar
  146. 146.
    Miwa, G. T., and Cho, A. K., 1976, Stimulation of microsomal N-demethylation by solubilized NADPH-cytochrome c reductase, Life Sci. 18: 983–988.PubMedCrossRefGoogle Scholar
  147. 147.
    Yang, C. S., 1977, Interactions between solubilized cytochrome P-450 and hepatic microsomes: Characterizations of the binding and enhanced catalytic activities, J. Biol. Chem. 252: 293–298.PubMedGoogle Scholar
  148. 148.
    Yang, C. S., and Strickhart, S., 1975, Interactions between solubilized cytochrome P450 and hepatic microsomes, J. Biol. Chem. 250: 7968–7972.PubMedGoogle Scholar
  149. 149.
    Yang, C. S., 1975, The association between cytochrome P-450 and NADPH-cytochrome P-450 reductase in microsomal membrane, FEBS Lett. 54: 61–64.PubMedCrossRefGoogle Scholar
  150. 150.
    Rogers, M. J., and Strittmatter, P., 1974, The binding of reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase to hepatic microsomes, J. Biol. Chem. 249: 5565–5569.PubMedGoogle Scholar
  151. 151.
    Rogers, M. J., and Strittmatter, P., 1974, Evidence for random distribution and translational movement of cytochrome b5 in endoplasmic reticulum, J. Biol. Chem. 249: 895–900.PubMedGoogle Scholar
  152. 152.
    Ito, A., 1974, Evidence obtained by cathepsin digestion of microsomes for the assembly of cytochrome b5 and its reductase in the membrane, J. Biochem. 75: 787–793.PubMedGoogle Scholar
  153. 153.
    Archakov, A. I., Borodin, E. A., Dobretsov, G. E., Karasevich, E. 1., and Karyakin, A. V., 1983, The influence of cholesterol incorporation and removal on lipid-bilayer viscosity and electron transfer in rat-liver microsomes, Eur. J. Biochem. 134: 89–95.Google Scholar
  154. 154.
    Richter, C., Winterhalter, K. H., and Cherry, R. J., 1979, Rotational diffusion of cytochrome P-450 in rat liver microsomes, FEBS Lett. 102: 151–154.PubMedCrossRefGoogle Scholar
  155. 155.
    McIntosh, P. R., Kawato, S., Freedman, R. B., and Cherry, R. J., 1980, Evidence from cross-linking and rotational diffusion studies that cytochrome P-450 can form molecular aggregates in rabbit-liver microsomal membranes, FEBS Lett. 122: 54–58.PubMedCrossRefGoogle Scholar
  156. 156.
    Schwarz, D., Pirrwitz, J., and Ruckpaul, K., 1982, Rotational diffusion of cytochrome P-450 in the microsomal membrane—Evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy, Arch. Biochem. Biophys. 216: 322–328.PubMedCrossRefGoogle Scholar
  157. 157.
    Greinert, R., Staerk, H., Stier, A., and Weller. A., 1979, E-type delayed fluorescence depolarization: A technique to probe rotational motion in the microsecond range, J. Biochem. Biophys. Methods 1: 77–83.PubMedCrossRefGoogle Scholar
  158. 158.
    Greinert, R., Finch, S. A. E., and Stier, A., 1982, Conformation and rotational diffusion of cytochrome P-450 changed by substrate binding, Biosci. Rep. 2: 991–994.PubMedCrossRefGoogle Scholar
  159. 159.
    Coleman, R., 1973, Membrane-bound enzymes and membrane ultrastructure, Biochim. Biophys. Acta 300: 1–30.PubMedCrossRefGoogle Scholar
  160. 160.
    Farias, R. N., Bloj, B., Morero, R. D., Sineriz, F., and Trucco, R. E., 1975, Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition, Biochim. Biophys. Acta 415: 231–251.PubMedCrossRefGoogle Scholar
  161. 161.
    Gazzotti, P., and Peterson, S. W., 1977, Lipid requirement of membrane-bound enzymes, J. Bioenerg. Biomembr. 9: 373–386.PubMedCrossRefGoogle Scholar
  162. 162.
    Boggs, J. M., Wood, D. D., Moscarello, M. A., and Papahadjopoulos, D., 1977, Lipid phase separation induced by a hydrophobic protein in phosphatidylserine–phosphatidylcholine vesicles, Biochemistry 16: 2325–2329.PubMedCrossRefGoogle Scholar
  163. 163.
    Brotherus, J. R., Jost, P. C., Griffith, O. H., Keana, J. F. W., and Hokin, L. E., 1980, Charge selectivity at the lipid–protein interface of membranous Na,K-ATPase. Proc. Natl. Acad. Sci. USA 77: 272–276.PubMedCrossRefGoogle Scholar
  164. 164.
    Brown, R. E., and Cunningham, C. C., 1982, Negatively charged phospholipid requirement of the oligomycin-sensitive mitochondrial ATPase, Biochim. Biophys. Acta 684: 141–145.PubMedCrossRefGoogle Scholar
  165. 165.
    Cunningham, C. C., and Sinthusek, G., 1979, Ionic charge on phospholipids and their interaction with the mitochondria) adenosine triphosphatase, Biochim. Biophys. Acta 550: 150–153.PubMedCrossRefGoogle Scholar
  166. 166.
    Pitotti, A., Contessa, A. R., Dabbeni-Sala, F., and Bruni. A., 1972, Activation by phospholipids of particulate mitochrondrial ATPase from rat liver, Biochim. Biophys. Acta 274: 528–535.PubMedCrossRefGoogle Scholar
  167. 167.
    Forsee, W. T., and Schutzbach, J. S., 1983, Interaction of a-1,2-mannosidase with anionic phospholipids, Eur. J. Biochem. 136: 577–582.PubMedCrossRefGoogle Scholar
  168. 168.
    Griffith, O. H., and Jost, P. C., 1979, in: Proceedings of the Japanese—American Seminar on Cytochrome Oxidase (B. Chance, T. E. King, K. Okunuki, and Y. Oril, eds.), Elsevier, Amsterdam, pp. 207–218.Google Scholar
  169. 169.
    McIntyre, J. O., Holladay, L. A., Smigel, M., Puett, D., and Fleischer, S., 1978, Hydrodynamic properties of D- 3-hydroxybutyrate dehydrogenase, a lipid-requiring enzyme, Biochemistry 17: 4169–4177.PubMedCrossRefGoogle Scholar
  170. 170.
    Gazzotti, P., Bock, H.-G., and Fleischer, S., 1975, Interaction of D-3-hydroxybutyrate apodehydrogenase with phospholipids, J. Biol. Chem. 250: 5782–5790.PubMedGoogle Scholar
  171. 171.
    Fleischer, S., McIntyre, J. O., Churchill, P., Fleer, E., and Mauver, A., 1983, in: Structure and Functions of Membrane Proteins (E. Quagliariello and F. Palmieri, eds.), Elsevier, Amsterdam, pp. 283–290.Google Scholar
  172. 172.
    Robinson, N. C., 1982, Specificity and binding affinity of phospholipids to the high-affinity cardiolipin sites of beef heart cytochrome c oxidase, Biochemistry 21: 184–188.PubMedCrossRefGoogle Scholar
  173. 173.
    Robinson, N. C., Strey, F., and Talbert, L., 1980, Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation, Biochemistry 19: 3656–3661.PubMedCrossRefGoogle Scholar
  174. 174.
    Fry, M., and Green, D. E., 1980, Cardiolipin requirement by cytochrome oxidases and the catalytic role of phospholipid, Biochem. Biophys. Res. Commun. 93: 1238–1246.PubMedCrossRefGoogle Scholar
  175. 175.
    Cinti, D. L., Sligar, S. G., Gibson, G. G., and Schenkman, J. B., 1979, Temperature-dependent spin equilibrium of microsomal and solubilized cytochrome P-450 from rat liver, Biochemistry 18: 36–42.PubMedCrossRefGoogle Scholar
  176. 176.
    Ebel, R. E., O’Keeffe, D. H., and Peterson, J. A., 1978, Substrate binding to hepatic microsomal cytochrome P-450: Influence of the microsomal membrane, J. Biol. Chem. 253: 3888–3897.PubMedGoogle Scholar
  177. 177.
    Gibson, G. G., Cinti, D. L., Sligar, S. G., and Schenkman, J. B., 1980, The effect of microsomal fatty acids and other lipids on the spin state of partially purified cytochrome P-450, J. Biol. Chem. 255: 1867–1873.PubMedGoogle Scholar
  178. 178.
    Ruckpaul, K., Rein, H., Blanck, J., and Coon, M. J., 1982, Molecular mechanisms of interactions between phospholipids and liver microsomal cytochrome P-450 LM2, Acta Biol. Med. Ger. 41: 193–203.PubMedGoogle Scholar
  179. 179.
    French, J. S., Guengerich, F. P., and Coon, M. J., 1980, Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system, J. Biol, Chem. 255: 4112–4119.Google Scholar
  180. 180.
    Tamburini, P. P., and Gibson, G. G., 1983, Thermodynamic studies of the protein—protein interactions between cytochrome P-450 and cytochrome b5: Evidence for a central role of the cytochrome P-450 spin state in the coupling of substrate and cytochrome b5 binding to the terminal hemoprotein, J. Biol. Chem. 258: 13444–13452.PubMedGoogle Scholar
  181. 181.
    Chiang, Y.-L., and Coon, M. J., 1979, Comparative study of two highly purified forms of liver microsomal cytochrome P-450: Circular dichroism and other properties, Arch. Biochem. Biophys. 195: 178–187.PubMedCrossRefGoogle Scholar
  182. 182.
    Guengerich, F. P., and Davison, N. K., 1982, Interaction of epoxide hydrolase with itself and other microsomal proteins, Arch. Biochem. Biophys. 215: 462–477.PubMedCrossRefGoogle Scholar
  183. 183.
    Vore, M., Hamilton, J. G., and Lu, A. Y. H., 1974, Organic solvent extraction of liver microsomal lipid. I. The requirement of lipid for 3,4-benzpyrene hydroxylase, Biochem. Biophys. Res. Commun. 56: 1038–1044.PubMedCrossRefGoogle Scholar
  184. 184.
    Ingelman-Sundberg, M., 1977, Phospholipids and detergents as effectors in the liver microsomal hydroxylase system, Biochim. Biophys. Acta 488: 225–234.PubMedCrossRefGoogle Scholar
  185. 185.
    Uvarov, V. Y., Backmanova, G. I., Archakov, A. I., Sukhomudrenko, A. G., and Myasoedova, K. N., 1980, Conformation and thermostability of soluble cytochrome P-450 and cytochrome P-450 incorporated into liposomal membrane, Biokhimiya 45: 1463–1469.Google Scholar
  186. 186.
    Archakov, A. I., Bachmanova, G. I., and Uvarov, V. Y., 1980, Interactions of cytochrome P-450 with phospholipid bilayer, in: Biochemistry, Biophysics and Regulation of Cytochrome P-450 (J.-A. Gustafsson, J. Carlstedt-Duke, A. Mode, and J. Rafter, eds.), Elsevier/North-Holland, Amsterdam, pp. 551–558.Google Scholar
  187. 187.
    Wang, H.-P., Pfeiffer, D. R., Kimura, T., and Tchen, T. T., 1974, Phospholipids of adrenal cortex mitochondria and the steroid hydroxylases: The lipid environment of cytochrome P-450, Biochem. Biophys. Res. Commun. 57: 93–99.PubMedCrossRefGoogle Scholar
  188. 188.
    Hall, P. F., Watanuki, M., DeGroot, J., and Rouser, G., 1978, Composition of lipids bound to pure cytochrome P-450 of cholesterol side-chain cleavage enzyme from bovine adrenocortical mitochondria, Lipids 14: 148–155.CrossRefGoogle Scholar
  189. 189.
    Ingelman-Sundberg, M., Haaparanta, T., and Rydström, J., 1981, Membrane charge as effector of cytochrome P-450LMZ catalyzed reactions in reconstituted liposomes, Biochemistry 20: 4100–4106.PubMedCrossRefGoogle Scholar
  190. 190.
    Ruckpaul, K., Rein, H., Ballou, D. P., and Coon, M. J., 1980, Analysis of interactions among purified components of the liver microsomal cytochrome P-450-containing monooxygenase system by second derivative spectroscopy, Biochim. Biophys. Acta 626: 41–56.PubMedCrossRefGoogle Scholar
  191. 191.
    Dehlinger, P. J., Jost, P. C., and Griffith, O. H., 1974, Lipid binding to the amphipathic membrane protein cytochrome b5, Proc. Natl. Acad. Sci. USA 71: 2280–2284.PubMedCrossRefGoogle Scholar
  192. 192.
    Bösterling, B., and Trudell, J. R., 1982, Phospholipid transfer between vesicles: Dependence on presence of cytochrome P-450 and phosphatidylcholine–phosphatidylethanolamine ratio, Biochim. Biophys. Acta 689: 155–160.PubMedCrossRefGoogle Scholar
  193. 193.
    Barsukov, L. I., Kulikov, V. I., Bachmanova, G. I., Archakov, A. I., and Bergelson, L. D., 1982, Cytochrome P-450 facilitates phosphatidylcholine flip-flop in proteoliposomes, FEBS Lett. 144: 337–340.PubMedCrossRefGoogle Scholar
  194. 194.
    Lambeth, J. D., 1981, Cytochrome P-450scc: Cardiolipin as an effector of activity of a mitochondrial cytochrome P-450, J. Biol. Chen. 256: 4757–4762.Google Scholar
  195. 195.
    Pember, S. O., Powell, G. L., and Lambeth, J. D., 1983, Cytochrome P-450–phospholipid interactions: Evidence for a cardiolipin binding site and thermodynamics of enzyme interactions with cardiolipin, cholesterol, and adrenodoxin, J. Biol. Chem. 258: 3198–3206.PubMedGoogle Scholar
  196. 196.
    Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370–2378.PubMedGoogle Scholar
  197. 197.
    Chaplin, M. D., and Mannering, G. J., 1970, Role of phospholipids in the hepatic microsomal drug-metabolizing system, Mol. Pharmacol. 6: 631–640.PubMedGoogle Scholar
  198. 198.
    Eling, T. E., and DiAugustine, R. P., 1971, A role for phospholipids in the binding and metabolism of drugs by hepatic microsomes: Use of the fluorescent hydrophobic probe 1-anilinonaphthalene-8-sulphonate, Biochem. J. 123: 539–549.PubMedGoogle Scholar
  199. 199.
    Tagg, J., and Mitoma, C., 1968, Studies on the microsomal drug-metabolizing enzyme system—Effect of isooctane and pyridine nucleotides, Biochem. Pharmacol. 17: 2471–2479.PubMedCrossRefGoogle Scholar
  200. 200.
    Parry, G., Palmer, D. N., and Williams, D. J., 1976, Ligand partitioning into membranes: Its significance in determining KM and Ks values for cytochrome P-450 and other membrane bound receptors and enzymes, FEBS Lett. 67: 123–129.PubMedCrossRefGoogle Scholar
  201. 201.
    Al-Gailany, K. A. S., Houston, J. B., and Bridges, J. W., 1978, The role of substrate lipophilicity in determining type 1 microsomal P-450 binding characteristics, Biochem. Pharmacol. 27: 783–788.PubMedCrossRefGoogle Scholar
  202. 202.
    McConnell, H. M., Wright, K. L., and McFarland, B. G., 1972, The fraction of the lipid in a biological membrane that is in a fluid state: A spin label assay, Biochem. Biophys. Res. Commun. 47: 273–281.PubMedCrossRefGoogle Scholar
  203. 203.
    Shimshick, E. J., and McConnell, H. M., 1973, Lateral phase separation in phospholipid membranes, Biochemistry 12: 2351–2360.PubMedCrossRefGoogle Scholar
  204. 204.
    Narasimhulu, S., 1977, Thermotropic transitions in fluidity of bovine adrenocortical microsomal membrane and substrate—cytochrome P-450 binding reaction, Biochim. Biophys. Acta 487: 378–387.PubMedCrossRefGoogle Scholar
  205. 205.
    Eletr, S., Zakim, D., and Vessey, D. A., 1973, A spin-label study of the role of phospholipide in the regulation of membrane-bound microsomal enzymes, J. Mol. Biol. 78: 351–362.PubMedCrossRefGoogle Scholar
  206. 206.
    Taniguchi, H., Imai, Y., and Sato, R., 1984, Substrate binding site of microsomal cytochrome P-450 directly faces membrane lipids, Biochem. Biophys. Res. Commun. 118: 916–922.PubMedCrossRefGoogle Scholar
  207. 207.
    Narasimhulu, S., 1979, Constraint on the substrate cytochrome P-450 binding reaction in bovine adrenocortical microsomes at physiological temperature, Biochim. Biophys. Acta 556: 457–468.PubMedCrossRefGoogle Scholar
  208. 208.
    Becker, J. F., Meehan, T., and Bartholomew, J. C., 1978, Fatty acid requirements and temperature dependence of monooxygenase activity in rat liver microsomes, Biochim. Biophys. Acta 512: 136–146.PubMedCrossRefGoogle Scholar
  209. 209.
    Duppel, W., and Ullrich, V., 1976, Membrane effects on drug monooxygenation activity in hepatic microsomes, Biochim. Biophys. Acta 426: 399–407.PubMedCrossRefGoogle Scholar
  210. 210.
    Bador, H., Morelis, R., and Louisot, P., 1984, Breaks in Arrhenius plots of reactions involving membrane-bound and solubilized sialyltransferases, due to temperature dependence of kinetic parameters, Biochim. Biophys. Acta 800: 75–86.PubMedCrossRefGoogle Scholar
  211. 211.
    Miwa, G. T., West, S. B., Huang, M.-T., and Lu, A. Y. H., 1979, Studies on the association of cytochrome P-450 and NADPH-cytochrome c reductase during catalysis in a reconstituted hydroxylating system, J. Biol. Chem. 254: 5695–5700.PubMedGoogle Scholar
  212. 212.
    Ingelman-Sundberg, M., and Johansson, I., 1980, Catalytic properties of purified forms of rabbit liver microsomal cytochrome P-450 in reconstituted phospholipid vesicles, Biochemistry 19: 4004–4011.PubMedCrossRefGoogle Scholar
  213. 213.
    Johnson, E. F., Schwab, G. E., and Dieter, H. H., 1983, Allosteric regulation of the 16a-hydroxylation of progesterone as catalyzed by rabbit microsomal cytochrome P450 3b, J. Biol. Chem. 258: 2785–2788.PubMedGoogle Scholar
  214. 214.
    Takemori, S., and Kominami, S., 1984, The role of cytochromes P-450 in adrenal steroidogenesis, Trends Biochem. Sci. 9: 393–396.CrossRefGoogle Scholar
  215. 215.
    Paul, D. P., Gallant, S., Orme-Johnson, N. R., Orme-Johnson, W. H., and Brownie, A. C., 1976, Temperature dependence of cholesterol binding to cytochrome P-450sec of the rat adrenal: Effect of adrenocorticotropic hormone and cycloheximide, J. Biol. Chem. 251: 7120–7126.PubMedGoogle Scholar
  216. 216.
    Brownie, A. C., Simpson, E. R., Jefcoate, C. R., and Boyd, G. S., 1972, Effect of ACTH on cholesterol side-chain cleavage in rat adrenal mitochondria, Biochem. Biophys. Res. Commun. 46: 483–490.PubMedCrossRefGoogle Scholar
  217. 217.
    Jefcoate, C. R., Orme-Johnson, W., and Beinert, H., 1973, Effect of ACTH on adrenal mitochondrial cytochrome P-450 in the rat, Ann. N. Y. Acad. Sci. 212: 344–360.PubMedCrossRefGoogle Scholar
  218. 218.
    Simpson, E. R., Jefcoate, C. R., Brownie, A. C., and Boyd, G. S., 1972, The effect of ether anaesthesia stress on cholesterol-side chain cleavage and cytochrome P-450 in rat-adrenal mitochondria, Eur. J. Biochem. 28: 442–450.PubMedCrossRefGoogle Scholar
  219. 219.
    Privalle, C. T., Crivello, J. F., and Jefcoate, C. R., 1983, Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland, Proc. Natl. Acad. Sci. USA 80: 702–706.PubMedCrossRefGoogle Scholar
  220. 220.
    Stevens, V. L., Aw, T. Y., Jones, D. P., and Lambeth, J. D., 1984, Oxygen dependence of adrenal cortex cholesterol side chain cleavage, J. Biol. Chem. 259: 1174–1179.PubMedGoogle Scholar
  221. 221.
    Vahouny, G. V., Dennis, P., Chanderbhan, R., Fiskum, G., Noland, B. J., and Scallen, T. J., 1984, Sterol carrier protein2 (SCP2)-mediated transfer of cholesterol to mitochondrial inner membranes, Biochem. Biophys. Res. Commun. 122: 509–515.PubMedCrossRefGoogle Scholar
  222. 222.
    Hsu, D. K., Huang, Y. Y., and Kimura, T., 1984, Thermodynamic properties of the cholesterol transfer reaction from liposomes to cytochrome P450: An enthalpy—entropy compensation effect, Biochem. Biophys. Res. Commun. 118: 877–884.PubMedCrossRefGoogle Scholar
  223. 223.
    Jefcoate, C. R., 1977, Cytochrome P-450 of adrenal mitochondria: Steroid binding sites on two distinguishable forms of rat adrenal mitochondria] cytochrome P-450, J. Biol. Chem. 252: 8788–8796.PubMedGoogle Scholar
  224. 224.
    Lambeth, J. D., Lancaster, J. R., Jr., Seybert, D. W., and Kamin, H., 1980, Binding of cholesterol and adrenodoxin to phospholipid vesicle reconstituted P-450, in: Microsomes, Drug Oxidations, and Chemical Carcinogenesis ( M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), Academic Press, New York, pp. 553–557.Google Scholar
  225. 225.
    Kido, T., Arakawa, M., and Kimura, T., 1979, Adrenal cortex mitochondial cytochrome P-450 specific to cholesterol side chain cleavage reaction: Spectral changes induced by detergents, alcohols, amines, phospholipids, steroid hydroxylase inhibitors, and steroid substrates, and conditions for adrenodoxin binding to the cytochrome, J. Biol. Chem. 254: 8377–8385.PubMedGoogle Scholar
  226. 226.
    Hanukoglu, 1., Spitsberg, V., Bumpus, J. A., Dus, K. M., and Jefcoate, C. R., 1981, Adrenal mitochondrial cytochrome P-450_,„c: Cholesterol and adrenodoxin interactions at equilibrium and during turnover, J. Biol. Chem. 256: 4321–4328.Google Scholar
  227. 227.
    Kido, T., Kimura, T., 1981, Stimulation of cholesterol binding to steroid-free cytochrome P-4505. by poly(L-lysine): The implication in functions of labile protein factor for adrenocortical steroidogenesis, J. Biol. Chem. 256: 8561–8568.PubMedGoogle Scholar
  228. 228.
    Lambeth, J. D., Kitchen, S. E., Farooqui, A. A., Tuckey, R., and Kamin, H., 1982, Cytochrome P-450, substrate interactions: Studies of binding and catalytic activity using hydroxycholesterols, J. Biol. Chem. 257: 1876–1884.PubMedGoogle Scholar
  229. 229.
    Sato, R., and Omura, T., 1978, Cytochrome P-450, Academic Press, New York.Google Scholar
  230. 230.
    Vore, M., Lu, A. Y. H., Kuntzman, R., and Conney, A. H., 1974, Organic solvent extraction of liver microsomal lipid. II. Effect on the metabolism of substrates and binding spectra of cytochrome P-450, Mol. Pharmacol. 10: 963–974.Google Scholar
  231. 231.
    Guengerich, P. F., and Holladay, L. A., 1979, Hydrodynamic characterization of highly purified and functionally active liver microsomal cytochrome P-450, Biochemistry 18: 5442–5449.PubMedCrossRefGoogle Scholar
  232. 232.
    Takagi, Y., Shikita, M., and Hall, P. F., 1975, The active form of cytochrome P-450 from bovine adrenocortical mitochondria, J. Biol. Chem. 250: 8445–8448.PubMedGoogle Scholar
  233. 233.
    Knapp, J. A., Dignam, J. D., and Strobel, H. W., 1977, NADPH-cytochrome P-450 reductase: Circular dichroism and physical studies, J. Biol. Chem. 252: 437–443.PubMedGoogle Scholar
  234. 234.
    Ingelman-Sundberg, M., Montelius, J., Rydström, J., and Gustafsson, J.-A., 1978, The active form of cytochrome P-450,10 from adrenal cortex mitochondria, J. Biol. Chem. 253: 5042–5047.PubMedGoogle Scholar
  235. 235.
    Baskin, L. S., and Yang, C. S., 1980, Cross-linking studies of cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase, Biochemistry 19: 2260–2264.PubMedCrossRefGoogle Scholar
  236. 236.
    Ingelman-Sundberg, M., and Johansson, 1., 1980, Cytochrome bs as electron donor to rabbit liver cytochrome P-450LM2 in reconstituted phospholipid vesicles, Biochem. Biophys. Res. Commun. 97: 582–589.PubMedCrossRefGoogle Scholar
  237. 237.
    Bösterling, B., and Trudell, J. R., 1982, Association of cytochrome b5 and cytochrome P-450 reductase with cytochrome P-450 in the membrane of reconstituted vesicles, J. Biol. Chem. 257: 4783–4787.PubMedGoogle Scholar
  238. 238.
    Guengerich, F. P., Ballou, D. P., and Coon, M. J., 1975, Purified liver microsomal cytochrome P-450: Electron-accepting properties and oxidation—reduction potential, J. Biol. Chem. 250: 7405–7414.PubMedGoogle Scholar
  239. 239.
    Bäckström, D., Ingelman-Sundberg, M., and Ehrenberg, A., 1983, Oxidation—reduction potential of soluble and membrane-bound rabbit liver microsomal cytochrome P-450LM, Acta Chem. Scand. Ser. B 37: 891–894.CrossRefGoogle Scholar
  240. 240.
    Kominami, S., and Takemori, S., 1982, Effect of spin state on reduction of cytochrome P-450 (P-450c,1) from bovine adrenocortical microsomes, Biochim. Biophys. Acta 709: 147–153.PubMedCrossRefGoogle Scholar
  241. 241.
    Archakov, A. I., Borondin, E. A., Davydov, D. R., Karyakin, A. I., and Borovyagin, V. L., 1982, Random distribution of NADPH-specific flavoprotein and cytochrome P450 in liver microsomes, Biochem. Biophys. Res. Commun. 109: 832–840.PubMedCrossRefGoogle Scholar
  242. 242.
    Hildebrandt, A., and Estabrook, R. W., 1971, Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions, Arch. Biochem. Biophys. 143: 66–79.PubMedCrossRefGoogle Scholar
  243. 243.
    Ingelman-Sundberg, M., and Johansson, 1., 1984, Electron flow and complex formation during cytochrome P-450-catalyzed hydroxylation reactions in reconstituted membrane vesicles, Acta Chem. Scand. B38: 845–851.CrossRefGoogle Scholar
  244. 244.
    Ingelman-Sundberg, M., Edvardsson, A.-L., and Johansson, I., 1981, Electron transport and cytochrome P-450-dependent oxygenations mediated by hydroxyl radicals in reconstituted membrane vesicles containing the rabbit liver microsomal monooxygenase system, in: Microsomes, Drug Oxidations, and Drug Toxicity ( R. Sato and R. Kato, eds.), Japan Scientific Press Societies Wiley—Interscience, New York, pp. 187–194.Google Scholar
  245. 245.
    Morgan, E. T., and Coon, M. J., 1984, Effects of cytochrome b5 on cytochrome P450-catalyzed reactions: Studies with manganese-substituted cytochrome b5, Drug Metab. Dispos. 12: 358–365.PubMedGoogle Scholar
  246. 246.
    Lu, A. Y. H., West, S. B., Vore, M., Ryan, D., and Levin, W., 1974, Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P-450-containing system, J. Biol. Chem. 249: 6701–6709.PubMedGoogle Scholar
  247. 247.
    Ingelman-Sundberg, M., Johansson, I., Brunström, A., Ekström, G., Haaparanta, T., and Rydström, J., 1980, The importance of cytochrome b-5 and negatively charged phospholipids in electron transport to different types of liver microsomal cytochrome P-450 in reconstituted phospholipid vesicles, in: Biochemistry, Biophysics and Regulation of Cytochrome P-450 (J.-À. Gustafsson, J. Carlstedt-Duke, A. Mode, and J. Rafter, eds.), Elsevier/North-Holland, Amsterdam, pp. 299–306.Google Scholar
  248. 248.
    Vatsis, K. P., Theoharides, A. D., Kupfer, D., and Coon, M. J., 1982, Hydroxylation of prostaglandins by inducible ioszymes of rabbit liver microsomal cytochrome P-450, J. Biol. Chem. 257: 11221–11229.PubMedGoogle Scholar
  249. 249.
    Strittmatter, P., and Rogers, M. J., 1975, Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes, Proc. Natl. Acad. Sci. USA 72: 2658–2661.PubMedCrossRefGoogle Scholar
  250. 250.
    Huang, M.-T., Johnson, E. F., Muller-Eberhard, U., Koop, D. R., Coon, M. J., and Conney, A. H., 1981, Specificity in the activation and inhibition by flavonoids of benzo(a)pyrene hydroxylation by cytochrome P-450 isozymes from rabbit liver microsomes, J. Biol. Chem. 256: 10897–10901.PubMedGoogle Scholar
  251. 251.
    Huang, M.-T., Chang, R. L., Fortner, J. G., and Conney, A. H., 1981, Studies on the mechanism of activation of microsomal benzo(a)pyrene hydroxylation by flavonoids, J. Biol. Chem. 256: 6829–6836.PubMedGoogle Scholar
  252. 252.
    Dalet, M. C., Andersson, K. K., Dalet-Beluche, I., Bonfils, C., and Maurel, P., 1983, Polyamines as modulators of drug oxidation reactions catalyzed by cytochrome P-450 from liver microsomes, Biochem. Pharmacol. 32: 593–601.PubMedCrossRefGoogle Scholar
  253. 253.
    König, B. W., Osheroff, N., Wilms, J., Juijsers, A. 0., Dekker, H. L., and Margoliash, E., 1980, Mapping of the interaction domain for purified cytochrome ci on cytochrome c, FEBS Lett. 111: 395–398.Google Scholar
  254. 254.
    Koppenol, W. H., and Margoliash, E., 1982, The asymmetric distribution of charges on the surface of horse cytochrome c: Functional implications, J. Biol. Chem. 257: 4426–4437.PubMedGoogle Scholar
  255. 255.
    Dailey, H. A., and Strittmatter, P., 1979, Modification and identification of cytochrome b5 carboxyl groups involved in protein—protein interaction with cytochrome b5 reductase, J. Biol. Chem. 254: 5388–5396.PubMedGoogle Scholar
  256. 256.
    Loverde, A., and Strittmatter, P., 1968, The role of lysyl residues in the structure and reactivity of cytochrome b5 reductase, J. Biol. Chem. 243: 5779–5787.PubMedGoogle Scholar
  257. 257.
    Dailey, H. A., and Strittmatter, P., 1980, Characterization of the interaction of amphipathic cytochrome b5 with stearyl coenzyme A desaturase and NADPH: cytochrome P-450 reductase, J. Biol. Chem. 255: 5184–5189.PubMedGoogle Scholar
  258. 258.
    Bernhardt, R., Makower, A., Jänig, G.-R., and Ruckpaul, K., 1984, Selective chemical modification of a functionally linked lysine in cytochrome P-450LM2, Biochim. Biophys. Acta 785: 186–190.PubMedCrossRefGoogle Scholar
  259. 259.
    Tuckey, R. C., and Kamin, H., 1983, Kinetics of 02 and CO binding to adrenal cytochrome P-4505cc: Effect of cholesterol, intermediates and phosphatidylcholine residues, J. Biol. Chem. 258: 4232–4237.PubMedGoogle Scholar
  260. 260.
    Dix, T. A., and Marnett, L. J., 1983, Metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid peroxidation, Science 221: 77–79.PubMedCrossRefGoogle Scholar
  261. 261.
    Imai, Y., Sato, R., and Iyanagi, T., 1977, Rate-limiting step in the reconstituted microsomal drug hydroxylase system, J. Biochem. 82: 1237–1246.PubMedGoogle Scholar
  262. 262.
    Iyanagi, T., Suzaki, T., and Kobayashi, S., 1981, Oxidation—reduction states of pyridine nucleotide and cytochrome P-450 during mixed-function oxidation in perfused rat liver, J. Biol. Chem. 256: 12933–12939.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Magnus Ingelman-Sundberg
    • 1
  1. 1.Department of Physiological ChemistryKarolinska InstituteStockholmSweden

Personalised recommendations