The Crystal Structure of Cytochrome P-450cam

  • Thomas L. Poulos


From the preceding chapters it is clear that a high-resolution crystal structure of P-450 is very desirable and that the obvious candidate for crystallographic studies is P-450cam. Indeed, some of the earliest studies on P-450cam resulted in its crystallization by Yu et al. in 1974.1 However, these crystals, designated orthorhombic I,2 were unsuitable for X-ray diffraction studies and it was not until 1982 that the first X-ray-quality crystals were reported.2 Gunsalus’s group and especially the efforts of G. C. Wagner were instrumental in reaching this milestone.


Thiolate Ligand Ammonium Sulfate Solution Helical Bundle Substrate Pocket Heterolytic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu, C.-A., Gunsalus, I. C., Katagiri, M., Suhara, K., and Takemori, S., 1974, Cytochrome P-450cam: Crystallization and properties, J. Biol. Chem. 249: 94 - 101.PubMedGoogle Scholar
  2. 2.
    Poulos, T. L., Perez, M., and Wagner, G. C., 1982, Preliminary crystallographic studies on cytochrome P-450cam, J. Biol. Chem. 257: 10427 - 10429.PubMedGoogle Scholar
  3. 3.
    Lipscomb, J. D., Harrison, J. E., Dus, K. M., and Gunsalus, I. C., 1978, Cytochrome P-450cam: Ss-dimer and -SH derivative reactivities, Biochem. Biophys. Res. Commun. 83: 771 - 778.PubMedCrossRefGoogle Scholar
  4. 4.
    Finzel, B., 1983, Crystallographic refinement of cytochrome c peroxidase at 1. 7 A resolution, Ph.D. thesis, University of California, San Diego.Google Scholar
  5. 5.
    Haniu, M., Armes, L. G., Yasunobu, K. T., Shastry, B. A., and Gunsalus, I. C., 1982, Amino acid sequence of the Pseudomonas putida cytochrome P450, J Biol. Chem. 257: 12664 - 12671.PubMedGoogle Scholar
  6. 6.
    Hendrickson, W. A., and Konnert, J. H., 1980, Stereochemically restrained crystallographic least-squares refinement of macromolecular structures, In: Computing in Crystallography (R. Diamond, S. Ramseshan, and K. Venkatesan, eds.), Indian Institute of Science, Bangalore, pp. 1301 - 1323.Google Scholar
  7. 7.
    Devaney, P., Wagner, G. C., Debrunner, P. G., and Gunsalus, I. C., 1980, Single crystal ESR of cytochrone P-450,, from Pseudomonas putida, Fed. Pt-oc. 39: 11 - 39.Google Scholar
  8. 8.
    Gunsalus, I. C., Wagner, G. C., and Debrunner, P. G., 1980, Probes of cytochrome P450 structure, In: Microsomes, Drug Oxidation and Chemical Carcinogenesis ( M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), Academic Press, New York, pp. 233 - 242.Google Scholar
  9. 9.
    Richardson, J., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34: 167 - 339.PubMedCrossRefGoogle Scholar
  10. 10.
    Ortiz de Montellano, P. R., Kunze, K. L., and Beilan, H. S., 1983, Chiral orientation of prosthetic heme in the cytochrome P450 active site, J. Biol. Chem. 258: 45 - 47.PubMedGoogle Scholar
  11. 11.
    Perutz, M. F., Muirhead, H., Cox, J. M., and Guaman, L. G., 1968, Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: The atomic model, Nature 219: 131 - 139.PubMedCrossRefGoogle Scholar
  12. 12.
    Murthy, M. R. N., Reid, T. J., Sicignano, A., Tanaka, N., and Rossmann, M. G., 1981, Structure of beef liver catalase, J. Mol. Biol. 152: 465 - 499.PubMedCrossRefGoogle Scholar
  13. 13.
    Poulos, T. L., Freer, S. T., Alden, R. A., Xuong, N. H., Edwards, S. L., Hamlin, R. C., and Kraut, J., 1978, Crystallographic determination of the heme orientation and location of the cyanide binding site in cytochrome c peroxidase, J. Biol. Chem. 257: 10427 - 10429.Google Scholar
  14. 14.
    Salemme, F. R., 1977, Structure and function of cytochrome c, Annu. Rev. Biochem. 46: 299 - 329.PubMedCrossRefGoogle Scholar
  15. 15.
    Poulos, T. L., and Finzel, B. C., 1984, Herne enzyme structure and function, In:Peptide and Protein Reviews, Volume 4 ( M. T. W. Hearn, ed.), Dekker, New York, pp. 115 - 171.Google Scholar
  16. 16.
    Asakura, T., and Yonetani, T., 1969, Studies on cytochrome c peroxidase: Recombination of apoenzyme with protoheme dialkyl esters and etioheme, J. Biol. Chem. 244: 4573 - 4579.PubMedGoogle Scholar
  17. 17.
    Bosshard, H. R., Banziger, J., Hasler, T., and Poulos, T. L., 1984, The ctyochrome c peroxidase-cytochrome c electron transfer complex: The role of histidine residues, J. Biol. Chem. 259: 5683 - 5690.PubMedGoogle Scholar
  18. 18.
    Champion, P. M., Gunsalus, I. C., and Wagner, G. C., 1978, Resonance Raman investigations of cytochrome P-450cam from Pseudomonas putida, J. Am. Chem. Soc. 100: 3743 - 3751.CrossRefGoogle Scholar
  19. 19.
    Champion, P. M., Stallard, B. R., Wagner, G. C., and Gunsalus, I. C., 1982, Resonance Raman detection of an Fe—S bond in cytochrome P-450cam, J. Am. Chem. Soc. 104: 54695472.Google Scholar
  20. 20.
    Valentine, J. S., Sheridan, R. P., Allen, L. C., and Kahn, P. L., 1979, Coupling between oxidation state and hydrogen bond conformation in heure proteins, Proc. Natl. Acad. Sci. USA 76: 1009 - 1013.PubMedCrossRefGoogle Scholar
  21. 21.
    Dawson, J. H., Andersson, L. A., and Sono, M., 1982, Spectroscopic investigations of cytochrome P-450cam-ligand complexes: Identification of the ligand trans to cysteinate in the native enzyme, J. Biol. Chem. 257: 3606 - 3617.PubMedGoogle Scholar
  22. 22.
    Kunze, K. L., Mangold, B. L. K., Wheeler, C., Beilan, H. S., and Ortiz de Montellano, P. R., 1983, The cytochrome P450 active site: Regiospecificity of prosthetic heme alkylation by olefins and acetylenes, J. Biol, Chem. 258: 4202 - 4207.Google Scholar
  23. 23.
    Fujii-Kuriyama, Y., Mizumaki, Y., Kawajiri, K., Sugawa, K., and Muramatsu, M. C., 1982, Primary structure of a cytochrome P450: Coding nucleotide sequence of phenobarbital inducible cytochrome P450 cDNA from rat liver, Proc. Natl. Acad. Sci. USA 79: 2793 - 2797.PubMedCrossRefGoogle Scholar
  24. 24.
    Heinemann, F. S., and Ozols, J., 1982, The covalent structure of rabbit phenobarbital-induced cytochrome P450: Partial amino acid sequence and order of cyanogen bromide peptides, J. Biol. Chem. 257: 14988 - 14999.PubMedGoogle Scholar
  25. 25.
    Black, S. D., Tarr, G. E., and Coon, M. J., 1982, Structural features of isozyme 2 of liver microsomal cytochrome P450, J. Biol. Chem. 257: 14616 - 14619.PubMedGoogle Scholar
  26. 26.
    Tarr, G. E., Black, S. D., Fujita, V. S., and Coon, M. J., 1983, Complete amino acid sequence and predicted membrane topology of phenobarbital induced cytochrome P450 (isozyme 2) from rabbit liver microsomes, Proc. Natl. Acad. Sci. USA 80: 65521 - 6556.CrossRefGoogle Scholar
  27. 27.
    Morohashi, K., Fujii-Kuriyama, Y., Okada, Y., Sogawa, K., Hirose, T., and Inayama, S., 1984, Molecular cloning and nucleotide sequence of cDNA for mRNA of mito- chondrial cytochrome P450 (SCC) of bovine adrenal cortex, Proc. Natl. Acad. Sci. USA 81: 4647 - 4651.PubMedCrossRefGoogle Scholar
  28. 28.
    Volz, K. W., Matthews, D. A., Alden, L. A., Freer, S. T., Hansch, C., Kaufman, B. T., and Kraut, J., 1982, Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH, J. Biol. Chem. 257: 2528 - 2536.PubMedGoogle Scholar
  29. 29.
    Buehner, M., Ford, G. C., Olsen, K. W., and Rossmann, M. G., 1974, Three dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase, J. Mol. Biol. 90: 25 - 49.PubMedCrossRefGoogle Scholar
  30. 30.
    Blesecker, G., Harris, J. I., Theiry, J. C., Walker, J. E., and Wonacott, A. J., 1977, Sequence and structure of D-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus, Nature 266: 328 - 333.CrossRefGoogle Scholar
  31. 31.
    Eventoff, W., Rossmann, M. G., Taylor, S. S., Torf, H. J., Meyer, H., Keil, W., and Kiltz, H. H., 1977, Structural adaptions of lactate dehydrogenase isozymes, Proc. Natl. Acad. Sci. USA 74: 2677 - 2681.PubMedCrossRefGoogle Scholar
  32. 32.
    Rossman, M. G., 1983, Structure—function relationships of NAD-dependent dehydrogenases, In: Biological Oxidations ( H. Sund and V. Ullrich, eds.) Springer-Verlag, Berlin, pp. 34 - 54.Google Scholar
  33. 33.
    Poulos, T. L., and Kraut, J., 1980, The stereochemistry of peroxidase catalysis, J. Biol. Chem. 255: 8199 - 8205.PubMedGoogle Scholar
  34. 34.
    Jones, P., and Suggett, A., 1968, The catalase—hydrogen peroxide system, Biochem. J. 110: 621 - 629.PubMedGoogle Scholar
  35. 35.
    Poulos, T. L., 1982, The peroxidase mechanism and the structure of cytochrome c peroxidase, In: Molecular Structure and Biological Activity ( J. E. Griffin and W. L. Duax, eds.), Elsevier, Amsterdam, pp. 79 - 90.Google Scholar
  36. 36.
    Ariaso, T., Miyoshi, K., and Yamazaki, I., 1976, Mechanisms of electron transfer from sulfite to horseradish peroxidase-hydroperoxide compounds, Biochemistry 15: 3059 - 3063.CrossRefGoogle Scholar
  37. 37.
    Dolphin, D., Forman, A., Borg, D. C., Fajer, J., and Felton, R. H., 1971, Compounds I of catalase and horse radish peroxidase: -rr-Cation radicals, Proc. Natl. Acad. Sci. USA 68: 614 - 618.PubMedCrossRefGoogle Scholar
  38. 38.
    Aasa, R., Vanngard, T., and Dunford, H. B., 1975, EPR studies of compound I of horseradish peroxidase, Biochim. Biophys. Acta 391: 259 - 264.PubMedCrossRefGoogle Scholar
  39. 39.
    King, N. K., and Winfield, M. E., 1963, The mechanisms of myoglobin oxidation, J. Biol. Chem. 238: 1520 - 1528.PubMedGoogle Scholar
  40. 40.
    White, R. E., Sligar, S. G., and Coon, M. J., 1980, Evidence for a homolytic mechanism of peroxide oxygen-oxygen bond cleavage during substrate hydroxylation by cytochrome P450, J. Biol. Chem. 255: 1108 - 1111.Google Scholar
  41. 41.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P450, Annu. Rev. Biochem. 49: 315 - 356.PubMedCrossRefGoogle Scholar
  42. 42.
    McCarthy, M. B., and White, R. E., 1983, Functional differences between compound I and the cytochrome P450 reactive oxygen intermediate, J. Biol. Chem. 258: 9153 - 9158.PubMedGoogle Scholar
  43. 43.
    Hamilton, G., 1974, Chemical models and mechanisms for oxygenases, In: Molecular Mechanisms of Oxygen Activation ( O. Hayashi ed.), Academic Press, New York, pp. 405 - 451.Google Scholar
  44. 44.
    Sligar, S. G., Shastry, B. S., and Gunsalus, I. C., 1977, Oxygen reactions of the P450 heure protein, In: Microsomes and Drug Oxidation ( V. Ullrich, I. Routs, A. Hildebrandt, R. W. Estabrook, and A. H. Cooney, eds.), Pergamon Press, Elmsford, N.Y., pp. 202 - 209.Google Scholar
  45. 45.
    Gleb, M. H., Heimbrook, D. C., Malkonen, P., and Sligar, S. G., 1982, Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450cam monoxygenase system, Biochemistry 21: 370 - 377.CrossRefGoogle Scholar
  46. 46.
    Phillips, S. E., 1980, Structure and refinement of oxymyoglobin at 1.6 A resolution, J. Mol. Biol. 142: 531 - 554.PubMedCrossRefGoogle Scholar
  47. 47.
    Jameson, G. B., Molinaro, F. S., Ibers, J. A., Coltman, J. P., Brauman, J. I., Rose, E., and Suslick, K. S., 1978, Structural changes upon oxygenation of an iron (II) (porphyrinato) (imidazole) complex, J. Am. Chem. Soc. 100: 6769 - 6770.CrossRefGoogle Scholar
  48. 48.
    Jameson, G. B., Rodley, G. A., Robinson, W. T., Gagne, R. R., Reed, C. A., and Collman, J. R., 1978, Structure of a dioxygen adduct of (1-methylimidazole)-mesotetrakis (a,a,a,a-o-pivalamidophenyl) porphinatoiron (II): An iron dioxygen model for the heme component of oxymyoglobin, lnorg. Chem. 17: 850 - 857.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Thomas L. Poulos
    • 1
  1. 1.Genex CorporationGaithersburgUSA

Personalised recommendations