Advertisement

Cytochrome P-450cam and Other Bacterial P-450 Enzymes

  • Stephen G. Sligar
  • Ralph I. Murray

Abstract

The purpose of this chapter is twofold. First, we will attempt to summarize the existing knowledge on the wide variety of bacterial cytochrome P-450 hemeproteins that have been discovered. As such, this represents the first comprehensive review of the bacterial cytochromes P-450. It should become evident to the reader that these cytochromes comprise a class just as diverse, if not more so, than their eukaryotic counterparts. Perhaps the best known and most extensively characterized of these bacterial enzymes is P-450cam isolated from Pseudomonas putida. From the initial isolation in Gunsalus’s laboratory in 1967 and subsequent investigations in many laboratories, the numerous studies employing this cytochrome have shed much light on the mechanisms associated with the family of P-450-dependent monooxygenases as a whole. A second goal of this chapter is to review the detailed biophysical, biochemical, and molecular biological studies conducted with this system. It should be noted that “P-450cam” and “bacterial P-450” are not synonymous. The various P-450 molecules described herein are in all probability only a very small fraction of those present in the myriad of bacterial cells in the biosphere. In view of the variety of substrate transformations that this enzyme family is able to catalyze, some of which are energetically very difficult, their distribution in nature is no doubt ubiquitous. One need only look through the American Type Culture Collection Catalogue1 under such diverse genera as Pseudomonas, Rhodococcus, Bacillus, and Nocardia among others to see the potential roles of yet undiscovered P-450 monooxygenases in the degradation and transformation of a plethora of compounds. Even if only a small portion of the enzymes involved in these various biotransformations are P-450 isozymes, there would correspond many hundreds of P-450 hemeproteins with definable specificities.

Keywords

Pseudomonas Putida Cumene Hydroperoxide Linear Free Energy Relationship Spin Equilibrium Rhizobium Japonicum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daggett, P. M., Gherna, R. L., Pienta, P., Nierman, W., Hsu, H., Brandon, B., and Alexander, M. T. (eds.), 1982 American Type Culture Collection Catalogue of Strains I, American Type Culture Collection, Rockville, Md.Google Scholar
  2. 2.
    Fried, J., Thoma, R. W., Perlman, D., Herz, J. E., and Borman, A., 1955, The use of microorganisms in the synthesis of steroid hormones and hormone analogues, Recent Prog. Horm. Res. 11: 149–181.Google Scholar
  3. 3.
    McAleer, W. J., Jacob, T. A., Turnbull, L. B., Schoenewaldt, E. F., and Stoudt, T. H., 1958, Hydroxylation of progesterone by Bacillus cereus and Bacillus megaterium, Arch. Biochem. Biophys. 73: 127–130.PubMedGoogle Scholar
  4. 4.
    Shiraska, M., Ozaki, M., and Sugawara, S., 1961, Studies on microbiological transformation of steroid compounds, J. Gen. Appl. Microbiol. 7: 341–352.Google Scholar
  5. 5.
    Wilson, J. E., and Vestling, C. S., 1965, A cell-free steroid hydroxylating system from Bacillus megaterium, strain KM, Arch. Biochem. Biophys. 110: 401–404.PubMedGoogle Scholar
  6. 6.
    Berg, A., Carlström, K., Gustafsson, J.-A., and Ingleman-Sunberg, M., 1975, Demonstration of a cytochrome P-450-dependent steroid 153 hydroxylase in Bacillus megaterium, Biochem. Biophys. Res. Commun. 66: 1414–1432.PubMedGoogle Scholar
  7. 7.
    Berg, A., Gustafsson, J.-A., Ingelman-Sunberg, M., and Carlström, K., 1976, Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium, J. Biol. Chem. 251: 2831–2838.PubMedGoogle Scholar
  8. 8.
    Berg, A., Carlström, K., Ingleman-Sundberg, M., Rafter, J., and Gustafsson, J.-A., 1977, Studies on a cytochrome P-450-dependent hydroxylase system active on steroids in Bacillus megaterium, in: Microsomes and Drug Oxidations ( V. Ullrich, J. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 377–384.Google Scholar
  9. 9.
    Berg, A., Ingelman-Sundberg, M., and Gustafsson, J.-A., 1979, Purification and characterization of cytochrome P-450meg, J. Biol. Chem. 254: 5264–5271.PubMedGoogle Scholar
  10. 10.
    Dus, K., Katagiri, M., Yu, C.-A., Erbes, D. L., and Gunsalus, I. C., 1970, Chemical characterization of cytochrome P-450eam, Biochem. Biophys. Res. Commun. 40: 1423 1430.Google Scholar
  11. 11.
    Appleby, C. A., and Daniel, R. M., 1965, Rhizobium cytochrome P-450: A family of soluble, separable hemoproteins, in: Oxidases and Related Redox Systems, Volume 2 (T. E. King, H. S. Mason, and M. Morrison, eds.), University Park Press, Baltimore, pp. 515–528.Google Scholar
  12. 12.
    Broadbent, D. A., and Cartwright. N. J., 1974, Bacterial attack on phenolic ethers: Electron acceptor-substrate binding proteins in bacterial 0-dealkylases: Purification and characterization of cytochrome P-450„Pd of Nocardia, Microbios 9: 119–130.PubMedGoogle Scholar
  13. 13.
    Omura, T., Sanders, E., Estabrook, R. W., Cooper, D. Y., and Rosenthal, 0., 1966, Isolation from adrenal cortex of a nonheme iron protein and flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, Arch. Biochem. Biophys. 117: 660–673.Google Scholar
  14. 14.
    Lu, A. Y. H., and Coon, M. J., 1968, Role of hemoprotein P-450 in fatty acid u-hydroxylation in a soluble enzyme system from liver microsomes, J. Biol. Chem. 243: 1331–1332.PubMedGoogle Scholar
  15. 15.
    Lu, A. Y. H., Kuntzman, R., West, S., Jacobson, M., and Conney, A. H., 1972, Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. II. Role of the cytochrome P-450 and P-448 fractions in drug and steroid hydroxylations, J. Biol. Chem. 247: 1727–1734.PubMedGoogle Scholar
  16. 16.
    Berg, A., and Rafter, J. J., 1981, Studies on the substrate specificity and inducibility of cytochrome P-450meg, Biochem. J. 196: 781–786.PubMedGoogle Scholar
  17. 17.
    Mieyal, J. J., Ackerman, R. S., Blumer, J. L., and Freeman, L. W., 1976, Characterization of enzyme-like activity of human hemoglobin, J. Biol. Chem. 251: 3436–3441.PubMedGoogle Scholar
  18. 18.
    Mieyal, J. J., and Blumer, J. L., 1976, Acceleration of the autooxidation of human oxyhemoglobin by aniline and its relation to hemoglobin-catalyzed aniline hydroxylation, J. Biol. Chem. 251: 3442–3446.PubMedGoogle Scholar
  19. 19.
    Vore, M., Lu, A. Y. H., Kuntzman, R., and Conney, A. H., 1972, Organic solvent extraction of liver microsomal lipid. II. Effect on the metabolism of substrates and binding spectra of cytochrome P-450, Mol. Pharmacol. 10: 963–974.Google Scholar
  20. 20.
    Haugen, D. A., van der Hoeven, T. A., and Coon, M. J., 1975, Purified liver microsomal cytochrome P-450: Separation and characterization of multiple forms, J. Biol. Chem. 250: 3567–3570.PubMedGoogle Scholar
  21. 21.
    Ingleman-Sundberg, M., 1977, Protein—lipid interactions in the liver microsomal hydroxylase system, in: Microsomes and Drug Oxidations ( V. Ullrich, J. Roots, A. Hildebrandt, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 67–75.Google Scholar
  22. 22.
    Narasimhulu, S., 1977, Relationship between the membrane lipids and substrate-cytochrome P-450 binding reaction in bovine adreno-cortical microsomes, in: Microsomes and Drug Oxidations ( V. Ullrich, J. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 119–126.Google Scholar
  23. 23.
    Nordblom, G. D., White, R. E., and Coon, M. J., 1976, Studies on hydroperoxidedependent substrate hydroxylation by purified liver microsomal cytochrome P-450, Arch. Biochem. Biophys. 175: 524–533.PubMedGoogle Scholar
  24. 24.
    Ingelman-Sundberg, M., 1977, Phospholipids and detergents as effectors in the liver microsomal hydroxylase system, Biochim. Biophys. Acta 488: 225–234.PubMedGoogle Scholar
  25. 25.
    Tyson, C. A., Lipscomb, J. D., and Gunsalus, I. C., 1972, The roles of putidaredoxin and P-450cam in methylene hydroxylation, J. Biol. Chem. 247: 5777–5784.PubMedGoogle Scholar
  26. 26.
    Miura, Y., and Fulco, A. J., 1974, (w-2) hydroxylation of fatty acids by a soluble system from Bacillus megaterium, J. Biol. Chem. 249: 1880–1888.Google Scholar
  27. 27.
    Miura, Y., and Fulco, A. J., 1975, w-1, w-2, and w-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium, Biochim. Biophys. Acta 388: 305–317.Google Scholar
  28. 28.
    Hare, R. S., and Fulco, A. J., 1975, Carbon monoxide and hydroxymercuribenzoate sensitivity of a fatty acid (w-2) hydroxylase from Bacillus megaterium, Biochem. Biophys. Res. Commun. 65: 665–672.PubMedGoogle Scholar
  29. 29.
    Ho. P. P., and Fulco, A. J., 1976, Involvement of a single hydroxylase species in the hydroxylation of palmitate at the w-1, w-2, and w-3 positions by a preparation from Bacillus megaterium, Biochim Biophys. Acta 431: 249–256.Google Scholar
  30. 30.
    Matson, R. S., Hare, R. S., and Fulco, A. J., 1977, Characteristics of a cytochrome P-450-dependent fatty acid w-2 hydroxylase from Bacillus megaterium, Biochim. Biophys. Acta 487: 487–494.PubMedGoogle Scholar
  31. 31.
    Buchanan, J. F., and Fulco, A. J., 1978, Formation of 9,10-epoxypalmitate and 9,10dihydroxy-palmitate from palmitoleic acid by a soluble system from Bacillus megaterium, Biochem. Biophys. Res. Commun. 85: 1254–1260.PubMedGoogle Scholar
  32. 32.
    Michaels, B. C., Ruettinger, R. T., and Fulco, A. J., 1980, Hydration of 9,10 epoxypalmitic acid by a soluble enzyme from Bacillus megaterium, Biochem. Biophys. Res. Commun. 92: 1189–1195.PubMedGoogle Scholar
  33. 33.
    Matson, R. S., Stein, R. A., and Fulco, A. J., 1980, Hydroxylation of 9-hydroxystearate by a soluble cytochrome P-450-dependent fatty acid hydroxylase from Bacillus megaterium, Biochem. Biophys. Res. Commun. 97: 955–961.PubMedGoogle Scholar
  34. 34.
    Matson, R. S., and Fulco, A. J., 1981, Hydroxystearates as inhibitors of palmitate hydroxylation catalyzed by the cytochrome P-450 monoxygenase from Bacillus megaterium, Biochem. Biophys. Res. Commun. 103: 531–535.PubMedGoogle Scholar
  35. 35.
    Fulco, A. J., 1974, Metabolic alterations of fatty acids, Annu. Rev. Biochem. 43: 215241.Google Scholar
  36. 36.
    Ruettinger, R. T., and Fulco, A. J., 1981, Epoxidation of unsaturated fatty acids by a soluble cytochrome P-450-dependent system from Bacillus megaterium, J. Biol. Chem. 256: 5728–5734.PubMedGoogle Scholar
  37. 37.
    Kusunose, M., Kusunose, E., and Coon, M. J., 1964, Enzymatic w-oxidation of fatty acids. I. Products of octanoate, decanoate, and laurate oxidation, J. Biol. Chem. 239: 1374–1380.PubMedGoogle Scholar
  38. 38.
    Kusunose, M., Kusunose, E., and Coon, M. J., 1964, Enzymatic w-oxidation of fatty acids. II. Substrate specificity and other properties of the enzyme system, J. Biol. Chem. 239: 2135–2139.PubMedGoogle Scholar
  39. 39.
    Peterson, J. A., Basu, D., and Coon, M. J., 1966, Enzymatic w-oxidation. I. Electron carriers in fatty acid and hydrocarbon hydroxylation, J. Biol. Chem. 241: 5162–5164.PubMedGoogle Scholar
  40. 40.
    Peterson, J. A., Kusunose, M., Kusunose, E., and Coon, M. J., 1967, Enzymatic w-oxidation. II. Function of rubredoxin as the electron carrier in w-hydroxylation, J. Biol. Chem. 242: 4334–4340.PubMedGoogle Scholar
  41. 41.
    Lu, A. Y. H., and Coon, M. J., 1968, Role of hemoprotein P-450 in fatty acid co-hydroxylation in a soluble enzyme system from liver microsomes, J. Biol. Chem. 243: 1331–1332.PubMedGoogle Scholar
  42. 42.
    Cardini, G., and Jurtshuk, P., 1968, Cytochrome P-450 involvement in the oxidation of n-octane by cell-free extracts of Corynebacterium sp. strain 7EIC, J. Biol. Chem. 243: 6070–6072.PubMedGoogle Scholar
  43. 43.
    Cardini, G., and Jurtshuk, P., 1970, The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7EIC, J. Biol. Chem. 245: 2789–2796.PubMedGoogle Scholar
  44. 44.
    Lebeault, J. M., Lode, E. T., and Coon, M. J., 1971, Fatty acid and hydrocarbon hydroxylation in yeast: Role of cytochrome P-450 in Candida tropicalis, Biochem. Biophys. Res. Commun. 42: 413–419.PubMedGoogle Scholar
  45. 45.
    Frommer, U., Ullrich, V., Staudinger, H., and Orrenius, S., 1972, The monooxygenation of n-heptane by rat liver microsomes, Biochim. Biophys. Acta 280: 487–494.PubMedGoogle Scholar
  46. 46.
    Duppel, W., Lebeault, J. M., and Coon, M. J., 1973, Properties of a yeast cytochrome P-450-containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes, and drugs, Eur. J. Biochem. 36: 583–592.PubMedGoogle Scholar
  47. 47.
    Gallo, M., Bertrand, J. C., Roche, B., and Azoulay, E., 1973, Alkane oxidation in Candida tropicalis, Biochim. Biophys. Acta 296: 624–638.PubMedGoogle Scholar
  48. 48.
    Narhi, L. O., and Fulco, A. J., 1982, Phenobarbital induction of a soluble cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium, J. Biol. Chem. 257: 2147–2150.PubMedGoogle Scholar
  49. 49.
    Fulco, A. J., Kim, B. H., Matson, R. S., Narhi, L. O., and Ruettinger, R. T., 1983, Nonsubstrate induction of a soluble bacterial cytochrome P-450 monooxygenase by phenobarbital and its analogs, Mol. Cell. Biochem 53/54: 155–161.Google Scholar
  50. 50.
    Kim, B. H., and Fulco, A. J., 1983. Induction by barbiturates of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium: Relationship between barbiturate structure and inducer activity, Biochem. Biophys. Res. Commun. 116: 843850.Google Scholar
  51. 51.
    Nahri, L. O., Kim, B. H., Stevenson, P. M., and Fulco, A. J., 1983, Partial characterization of a barbiturate-induced cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium, Biochem. Biophys. Res. Commun. 116: 851–858.Google Scholar
  52. 52.
    Salaün, J. P., Benveniste, I., Reichhard, D., and Durst, F., 1981, Induction and specificity of a (cytochrome P-450)-dependent laurate in-chain-hydroxylase from higher plant microsomes, Eur. J. Biochem. 119: 651–655.PubMedGoogle Scholar
  53. 53.
    Kester, A. S., and Foster, J. W., 1963, Diterminal oxidation of long-chain alkanes by bacteria, J. Bacteriol. 85: 859–869.PubMedGoogle Scholar
  54. 54.
    Asperger, O., Naumann, A., and Kleber, H. P., 1981, Occurrence of cytochrome P450 in Acinetobacter strains after growth on n-hexadecane, FEMS Microbiol. Lett, 11: 309–312.Google Scholar
  55. 55.
    Kleber, H. P., Claus R., and Asperger, 0., 1983, Enzymologie der n-Alkanoxidation bei Acinetobacter, Acta Biotechnol 3: 251–260.Google Scholar
  56. 56.
    Asperger, O., Muller, R., and Kleber, H. P., 1983, Isolierung von Cytochrom P-450 und des entsprechenden reductase Systems aus Acinetobacter calcoaceticus, Acta Biotechnol 3: 319–326.Google Scholar
  57. 57.
    Haferburg, D., Asperger, O., Lohs, U., and Kleber, H. P., 1983, Regulation der Alkanverwertung bei Acinetobacter calcoaceticus, Acta Biotechnol 3: 371–374.Google Scholar
  58. 58.
    Asperger, O., Naumann, A., and Kleber, H. P., 1984, Inducibility of cytochrome P450 in Acinetobacter calcoaceticus by n-alkanes, Appl. Microbiol. Biotechnol. 19: 398403.Google Scholar
  59. 59.
    Hedegaard, J., and Gunsalus, I. C., 1965, Mixed function oxidation. IV. An induced methylene hydroxylase in camphor oxidation, J. Biol. Chem. 240: 4038–4043.PubMedGoogle Scholar
  60. 60.
    Jacobson, L. A. Bartholomaus, R. C., and Gunsalus, I. C., 1966, Repression of malic enzyme by acetate in Pseudomonas, Biochem. Biophys. Res. Commun. 24: 955–960.Google Scholar
  61. 61.
    Gunsalus, I. C., Bertland, A. U., and Jacobson, L. A., 1967, Enzyme induction and repression in anabolic and catabolic pathways, Arch. Mikrobiol. 59: 113–122.PubMedGoogle Scholar
  62. 62.
    Azoulay, E., Chouteau, J., and Davidovics, G., 1963, Isolement et caractèrisation des enzymes résponsables de l’oxydation des hydrocarbures, Biochim. Biophys. Acta 77: 554–567.Google Scholar
  63. 63.
    den Dooren de Jong, L. E., 1926, Bijdrage tot de Kennis van het Mineralisatieproces, Thesis, Thechnische Hogeschool, Delft, the Netherlands, Nijgh and Van Ditmar, Rotterdam, Bio!. Abstr. 1:12696.Google Scholar
  64. 64.
    Stainer, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aerobic pseudomonads: A taxonomic study, J. Gen. Microbiol. 43: 159–271.Google Scholar
  65. 65.
    Bradshaw, W. H., Conrad, H. E., Corey, E. J., Gunsalus, I. C., and Lednicer, D., 1959, Degradation of (+) — camphor, J. Am. Chem. Soc. 81: 5007.Google Scholar
  66. 66.
    Cushman, D. W., Tsai, R. L., and Gunsalus, I. C., 1967, The ferroprotein component of a methylene hydroxylase, Biochem. Biophys. Res. Commun. 26: 577–583.PubMedGoogle Scholar
  67. 67.
    Katagiri, M., Ganguli, B. N., and Gunsalus, I. C., 1968, A soluble cytochrome P-450 functional in methylene hydroxylation, J. Bio!. Chem. 243: 3543–3546.Google Scholar
  68. 68.
    Yu, C. A., Gunsalus, I. C., Katagiri, M., Suhara, K., and Takemori, S., 1974, Cytochrome P-450cam. I. Crystallization and properties, J. Biol. Chem. 249: 94–101.PubMedGoogle Scholar
  69. 69.
    Paisley, N. S., 1961, Purification and characterization of two dehydrogenases acting on 5-ketocamphor, Ph.D. dissertation, University of Illinois, Urbana—Champaign.Google Scholar
  70. 70.
    Conrad, H. E., DuBus, R., and Gunsalus, I. C., 1961, An enzyme system for cyclic ketone lactonization, Biochem. Biophys. Res. Commun. 6: 293–297.PubMedGoogle Scholar
  71. 71.
    Conrad, H. E., and DuBus, R., Namtved, M. J., and Gunsalus, I. C., 1965, Mixed function oxidation. II. Separation and properties of the enzymes catalyzing camphor lactonization, J. Biol. Chem. 240: 495–503.Google Scholar
  72. 72.
    Conrad, H. E., Lieb, K., and Gunsalus, I. C., 1965, Mixed function oxidation. III. An electron transport complex in camphor ketolactonization, J. Biol. Chem. 240: 40294037.Google Scholar
  73. 73.
    Yu, C. A., 1969, Components and properties of the ketolactonase I enzymatic oxygenase system, Ph.D. dissertation, University of Illinois, Urbana—Champaign.Google Scholar
  74. 74.
    Hartline, R. L., and Gunsalus, I. C., 1971, Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida, J. Bacteriol. 106: 468–478.PubMedGoogle Scholar
  75. 75.
    Gunsalus, I. C., and Marshall, V. P., 1971, Monoterpene dissimilation: Chemical and genetic models, CRC Crit. Rev. Microbio!. 1: 291–310.Google Scholar
  76. 76.
    Rheinwald, J. G., 1970, The genetic organization of peripheral metabolism: A transmissible plasmid controlling camphor oxidation in Pseudomonas putida, M.S. thesis, University of Illinois, Urbana—Champaign.Google Scholar
  77. 77.
    Rheinwald, J. G., Chakrabarty, A. M., and Gunsalus, I. C., 1973, A transmissible plasmid controlling camphor oxidation in Pseudomonas putida, Proc. Natl. Acad. Sci USA 70: 885–889.PubMedGoogle Scholar
  78. 78.
    Gunsalus, I. C., Conrad, H. E., Trudgill, P. W., and Jacobson, L. A., 1965, Regulation of catabolic metabolism, Isr. J. Med. Sci. 1: 1099–1119.Google Scholar
  79. 79.
    Chakrabarty, A. M., 1976, Plasmids in Pseudomonas, Annu. Rev. Genet. 10: 7–30.PubMedGoogle Scholar
  80. 80.
    Jacobson, L. A., 1967, Enzyme induction and repression in the catabolism of (+)=camphor by Pseudomonas putida, Ph.D. dissertation, University of Illinois, Urbana—Champaign.Google Scholar
  81. 81.
    Marshall, V. P., and Sokatch, J. R., 1970, Synthesis of valine catabolic enzymes in Pseudomonas putida, Fed. Proc. 30: 1167.Google Scholar
  82. 82.
    Koga, H., and Gunsalus, I. C., 1982, Cloning and expression of CAM P-450 genes in Pseudomonas putida and Escherichia coli, Proc. 55th Annu Meet. Jpn. Biochem. Soc. 10: 82–84.Google Scholar
  83. 83.
    Bagdasarian, M. M., Amann, E., Lurz, R., Rückert, B., and Bagdasarian, M., 1983, Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida: Construction of broad-host-range, controlled-expression vectors, Gene 26: 273–282.PubMedGoogle Scholar
  84. 84.
    Unger, B. P., Gunsalus, I. C., and Sligar, S. G., 1986, Nucleotide sequence of the Pseudomonas putidacytochrome P-450cam gene and its expression in Escherichia coli,J. Biol. Chem.in press.Google Scholar
  85. 85.
    Vieria, J., and Messing, J., 1982, The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers, Gene 19: 259268.Google Scholar
  86. 86.
    Haniu, M., Armes, L. G., Yasunobu, K. T., Shastry, B. A., and Gunsalus, I. C., 1982, Amino acid sequence of the Pseudomonas putida cytochrome P-450. II. Cyanogen bromide peptides, acid cleavage peptides, and the complete sequence, J. Biol. Chem. 257: 12664–12671.PubMedGoogle Scholar
  87. 87.
    Goodfellow, M., and Alderson, G., 1977, the actinomycete-genus Rhodococcus: A home for the ’rhodochrous’ complex, J. Gen. Microbiol. 100: 99–122.Google Scholar
  88. 88.
    Goodfellow, M., and Minnikin, D. E., 1981, Introduction to the coryneform bacteria, in: The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Volume 2 ( M. P. Starr, H. Stolp, H. G., Trüper, A. Balous, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 1812–1826.Google Scholar
  89. 89.
    Kay, J. W. D., Conrad, H. E., and Gunsalus, I. C., 1962, Camphor degradation: Hydroxy intermediate formed by a soil diphtheroid, Bacteriol. Proc. 30: 108.Google Scholar
  90. 90.
    Chapman, P. J., Cushman, D., Kuo, J. F., LeGall, J., and Gunsalus, I. C., 1964, Pathways in microbial metabolism of camphor enantiomers, Abstracts of Papers, National Meeting of the American Chemical Society, Chicago, American Chemical Society, Washington, D.C., p. 4Q.Google Scholar
  91. 91.
    Gunsalus, I. C., Trudgill, P. W., Cushman, D., and Conrad, H. E., 1965, Stereospecific biological oxygenation of terpenoids, Symp. Recent Adv. Chem Terpenoids, Poona, India, p. 3.Google Scholar
  92. 92.
    Chapman, P. J., Kuo, J. F., and Gunsalus, I.C., 1963, Camphor oxidation: 2,6-Diketocamphane pathway in diphtheroid, Fed. Proc. 22: 296.Google Scholar
  93. 93.
    Chapman, P. J., Meerman, G., Gunsalus, I. C., Srinivsan, R., and Rinehart, K. L., 1966, A new acyclic acid intermediate in camphor oxidation, J. Am. Chem. Soc. 88: 618–619.Google Scholar
  94. 94.
    Shukla, O. P., Moholay. M. N., and Bhattacharyya, P. K., 1968, Microbiological transformations of terpenes. Part X. Fermentation of a-and 3-pinenes by a soil pseudomonad (PL-strain), Indian J. Biochem. 5: 79–91.Google Scholar
  95. 95.
    DeFrank, J. J., and Ribbons, D. W., 1977, p-Cymene pathway in Pseudomonas putida: Initial reactions, J. Bacteriol. 129: 1356–1364.Google Scholar
  96. 96.
    Wigmore, G. J., and Ribbons, D. W., 1980, p-Cymene pathway in Pseudomonas putida: Selective enrichment of defective mutants by using halogenated substrate analogs, J Bacteriol 143: 816–824.Google Scholar
  97. 97.
    Wigmore, G. J., and Ribbons, D. W., 1981, Selective enrichment of Pseudomonas spp. defective in catabolism after exposure to halogenated substrates, J. Bacteriol. 146: 920–927.PubMedGoogle Scholar
  98. 98.
    Madhyastha, K. M., and Bhattacharyya, P. K., 1968, Microbiological transformations of terpenes. Part XII. Fermenation of p-cymene by a soil pseudomonad (PL-strain), Indian J. Biochem. 5: 102–111.Google Scholar
  99. 99.
    Madhyastha, K. M., and Bhattacharyya, P. K., 1968, Microbiological transformations of terpenes. Part XIII. Pathways for degradation of p-cymene in a soil pseudomonad (PL-strain), Indian J. Biochem 5: 161–167.PubMedGoogle Scholar
  100. 100.
    Madhyastha, K. M., Rangachari, P. N., Raghabendra, R. M., and Bhattacharyya, P. K., 1968, Microbiological transformations of terpenes. Part XV. Enzyme systems in the catabolism of p-cymene in PL-strains, Indian J. Biochem. 5: 167–173.PubMedGoogle Scholar
  101. 101.
    DeFrank, J. J., and Ribbons, D. W., 1976, The p-cymene pathway in Pseudomonas putida PL: Isolation of a dihydrodiol accumulated by a mutant, Biochem. Biophys. Res. Commun. 70: 1129–1135.PubMedGoogle Scholar
  102. 102.
    DeFrank, J. J., and Ribbons, D. W., 1977, p-Cymene pathway in Pseudomonas putida: Ring cleavage of 2,3-dihyroxy-p-cumate and subsequent reactions, J. Bacteriol. 129: 1365–1374.Google Scholar
  103. 103.
    Anderson, B. N., Wigmore, G. J., and Ribbons, D. W., 1979, Two degradative plasmids which encode the meta-cleavage of 4-substituted-2,3-dihydroxy-benzoates, Abstracts of Papers, Annual Meeting of the American Society of Microbiologists, American Society of Microbiologists, Washington, D.C., p. 199.Google Scholar
  104. 104.
    Gunsalus, I. C., and Yen, K. M., 1981, Metabolic plasmid organization and distribution, in: Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids (S. B. Levy, R. C. Clowes, and E. L, Koenig, eds.), Plenum Press, New York, pp. 499–509.Google Scholar
  105. 105.
    Madhyastha, K. M., Bhattacharyya, P. K., and Vaidyanathan, C. S., 1977, Metabolism of a monoterpene alcohol, linalool, by a soil pseudomonad, Can. J. Microbiol. 23: 230239.Google Scholar
  106. 106.
    Rama Devi, J., and Bhattacharyya, P. K., 1977, Microbiological transformations of terpenes. Part XXII. Fermentation of geraniol, nerol, and limonene by a soil pseudomonad, Pseudomonas incognita (linalool strain), Indian J. Biochem. Biophys. 14: 288–291.Google Scholar
  107. 107.
    Rama Devi, J., and Bhattacharyya, P. K., 1977, Microbiological transformations of terpenes. Part XXIV. Pathways of degradation of linalool, geraniol, nerol, and limonene by Pseudomonas incognita (linalool strain), Indian J. Biochem. Biophys. 14: 359–363.Google Scholar
  108. 108.
    Rama Devi, J., Bhat, S. G., and Bhattacharyya, P. K., 1978, Microbiological transformation of terpenes. Part XXV. Enzymes involved in the degradation of linalool in the Pseudomonas incognita, linalool strain, Indian J. Biochem. Biophys. 15: 323–327.Google Scholar
  109. 109.
    Ullah, A. H. J., Bhattacharyya, P. K., Bakthavachalam, J., Wagner, G. C., and Gunsalus, I. C., 1983, Linalool 8-hydroxylase: A heme thiolate monooxygenase, Fed. Proc. 42: 1897.Google Scholar
  110. 110.
    Wagner, G. C., Jung, C., Shyansunder, E., and Bowne, S., 1983, Spectral comparisons of the heure thiolate and iron sulfur proteins from linalool and camphor monooxygenases, Fed. Proc. 42: 1897.Google Scholar
  111. 111.
    Seubert, W., 1960, Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium Pseudomonas citronellolis, J. Bacteriol. 79: 426–434.PubMedGoogle Scholar
  112. 112.
    Seubert, W., Fass, E., and Remberger, U., 1963, Untersuchungen über den bakteriellen Abbau von Isoprenoiden. III. Reinigung und Eigenschafter der geranyl Carboxylase, Biochem. Z. 338: 245–264.PubMedGoogle Scholar
  113. 113.
    Seubert, W., and Fass, E., 1964, Untersuchungen uber den bakteriellen Abbau von Isoprenoiden. V. Der Mechanismus des Isoprenoidabbaues, Biochem. Z. 341: 35–41.PubMedGoogle Scholar
  114. 114.
    Meehan, T. D., and Coscia, C. J., 1973, Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea, Biochem. Biophys. Res. Commun. 53: 1043–1048.PubMedGoogle Scholar
  115. 115.
    Escher, S., Loew, P., and Arigoni, D., 1970, The role of hydroxygeraniol and hydroxynerol in the biosynthesis of loganin and indole alkaloids, Chem. Commun. 13: 823825.Google Scholar
  116. 116.
    Appleby, C. A., 1967, A soluble hemoprotein P-450 from nitrogen-fixing Rhizobium bacteroids, Biochim. Biophys. Acta 147: 399–402.PubMedGoogle Scholar
  117. 117.
    Appleby, C. A., 1969, Electron transport systems of Rhizobium japonicumI. Haemoprotein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteriods from N2-fixing root nodules, Biochim. Biophys. Acta 172: 71–87.PubMedGoogle Scholar
  118. 118.
    Daniel, R. M., and Appleby, C. A., 1972, Anaerobic-nitrate, symbiotic and aerobic growth of Rhizobium japonicum: Effects on cytochrome P-450, other hemoproteins, nitrate and nitrite reductases, Biochim. Biophys. Acta 275: 347–354.PubMedGoogle Scholar
  119. 119.
    Appleby, C. A., Turner, G. L., and Macnicol, P. K., 1975, Involvement of oxyleghaemoglobin and cytochrome P-450 in an efficient oxidative phosphorylation pathway which supports nitrogen fixation in Rhizobium, Biochim. Biophys. Acta 387: 461–474.PubMedGoogle Scholar
  120. 120.
    Dus, K., Goewert, R., Weaver, C. C., Carey, D., and Appleby, C. A., 1976, P-450 hemoproteins of Rhizobium japonicum: Purification by affinity chromatography and relationship to P-450có,,, and P-4501 M2’ Biochem. Biophys. Res. Commun 69: 437–445.PubMedGoogle Scholar
  121. 121.
    Dus, K., Litchfield, W. J., Miguel, A. G., Van der Hoeven, T. A. Haugen, D. A., Dean, W. L., and Coon, M. J., 1974, Structural resemblance of cytochrome P-450 isolated from Pseudomonas putida and from rabbit liver microsomes, Biochem. Biophys. Res. Commun. 60: 15–21.Google Scholar
  122. 122.
    Peisach, J., Appleby, C. A., and Blumberg, W. E., 1972, Electron paramagnetic resonance and temperature dependent spin state studies of ferric cytochrome P-450 from Rhizobium japonicum, Arch. Biochem. Biophys. 150: 725–732.PubMedGoogle Scholar
  123. 123.
    Tsai, T., Yu, C. A. Gunsalus, I. C., Peisach, J., Blumberg, W.. Orme-Johnson, W. H., and Beinart, H., 1970, Spin-state changes in cytochrome P-450cä, on binding specific substrates, Proc. Natl. Acad. Sci. USA 66: 1157–1163.PubMedGoogle Scholar
  124. 124.
    Peisach, J., and Blumberg, W. E., 1970, Electron paramagnetic resonance study of the high-and low-spin forms of cytochrome P-450 in liver and in liver microsomes from a methylcholanthrene-treated rabbit, Proc. Natl. Acad. Sci. USA 67: 172–179.PubMedGoogle Scholar
  125. 125.
    Kretovich, V. L., Melik-Sarkisyan, S. S., and Mattis. V. K., 1972, Cytochrome composition of yellow lupine nodules, Biochemistry (USSR) 37: 590–597.Google Scholar
  126. 126.
    Cartwright, N. J., Holdom, K. S., and Broadbent, D. A., 1971, Bacterial attack on phenolic ethers: Dealkylation of higher ethers and further observations on 0-demethylases, Microbios 3: 113–130.PubMedGoogle Scholar
  127. 127.
    Broadbent, D. A., and Cartwright, N. J., 1971, Bacterial attack on phenolic ethers: Resolution of a Nocardia 0-demethylase and purification of a cytochrome P-450 component, Microbios 4: 7–12.PubMedGoogle Scholar
  128. 128.
    Cartwright, N. J., and Broadbent, D. A., 1974, Bacterial attack on phenolic ethers: Preliminary studies on systems transporting electrons to the substrate binding components in bacterial O-dealkylases, Microbios 10: 87–96.PubMedGoogle Scholar
  129. 129.
    Gunsalus, I. C., and Wagner, G. C., 1978, Bacterial P-450,;,,,,, methylene monooxygenase components: Cytochrome M, putidaredoxin, and putidaredoxin reductase, Methods Enzymol 52: 166–188.PubMedGoogle Scholar
  130. 130.
    Peterson, J. A., 1971, Camphor binding by Pseudomonas putida cytochrome P-450, Arch. Biochem, Biophys 144: 678–693.Google Scholar
  131. 131.
    Gunsalus, I. C., and Lipscomb, J. D., 1972, Component dynamics in oxygen reduction by cytochrome P-450can„ in: The Molecular Basis of Electron Transport (J. Schultz and B. F. Cameron, eds.), Academic Press, New York, pp. 176–196.Google Scholar
  132. 132.
    Griffin, B. W., and Peterson, J. A., 1972, Camphor binding by Pseudomonas putida cytochrome P-450: Kinetics and thermodynamics of the reaction, Biochemistry 11: 4740–4746.PubMedGoogle Scholar
  133. 133.
    Pederson, T. C., Austin, R. H., and Gunsalus, I. C., 1977, Redox and ligand dynamics in P-450cä,,,—putidaredoxin complexes, in: Microsomes and Drug Oxidations ( V. Ullrich, J. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 275–283.Google Scholar
  134. 134.
    Hintz, M. J., and Peterson, J. A., 1981, The kinetics of reduction of cytochrome P450cam by reduced putidaredoxin, J. Biol. Chem. 256: 6721–6728.PubMedGoogle Scholar
  135. 135.
    Hintz, M. J., Mock, D. M., Peterson, L. L., Tuttle, K., and Peterson, J. A., 1982, Equilibrium and kinetic studies of the interaction of cytochrome P-450cam and putidaredoxin, J. Biol. Chem. 257: 14324–14332.PubMedGoogle Scholar
  136. 136.
    Sligar, S. G., 1976, Coupling of spin, substrate, and redox equilibria in cytochrome P450, Biochemistry 15: 5399–5406.PubMedGoogle Scholar
  137. 137.
    Philson, S. B., 1976, Proton relaxation studies of the interaction of small molecules with cytochrome P-450, Ph.D. dissertation, University of Illinois, Urbana-Champaign.Google Scholar
  138. 138.
    Sligar, S. G., and Gunsalus, I. C., 1976, A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase, Proc. Natl. Acad. Sci. USA 73: 1078–1082.PubMedGoogle Scholar
  139. 139.
    Sligar, S. G., Cinti, D. L., Gibson, G. G., and Schenkman, J. B., 1979, Spin state control of the hepatic cytochrome P-450 redox potential, Biochem. Biophys. Res. Commun. 90: 925.PubMedGoogle Scholar
  140. 140.
    Gibson, G. G., Cinti, D. L., Sligar, S. G., and Schenkman, J. B., 1980, The effect of microsomal lipids on the spin state of purified de-lipidated cytochrome P-450, Biochem. Soc. Trans. 8: 101.PubMedGoogle Scholar
  141. 141.
    Backes, W. L., Sligar, S. G., and Schenkman, J. B., 1980, Cytochrome P-450 reduction exhibits burst kinetics, Biochem. Biophys. Res. Commun. 97: 860–866.PubMedGoogle Scholar
  142. 142.
    Backes, W. L., Sligar, S. G., and Schenkman, J. B., 1982, Kinetics of hepatic cytochrome P-450 reduction: Correlation with spin state of ferric heure, Biochemistry 21: 1324–1330.PubMedGoogle Scholar
  143. 143.
    Rein, H., Ristau, O., Misselwitz, R., Buder, E., and Rickpaul, K., 1979, The importance of the spin equilibrium in cytochrome P-450 for the reduction rate of the heure iron, Acta Biol. Med Ger. 38: 187–200.PubMedGoogle Scholar
  144. 144.
    Hintz, M. J., and Peterson, J. A., 1980, The kinetics of reduction of cytochrome P450cam by the dithionite anion monomer, J. Biol. Chem. 255: 7317–7325.PubMedGoogle Scholar
  145. 145.
    Debey, P., Land, E. J., Santus, R., and Swallow, A. J., 1979, Electron transfer from pyridinyl radicals, hydrated electrons, CO2–and 02’ to bacterial cytochrome P-450, Biochem. Biophys. Res. Commun. 86: 953–960.PubMedGoogle Scholar
  146. 146.
    Bazin, M., Pierre, J., Debey, P., and Santus, R., 1982, One electron photoreduction of bacterial cytochrome P-450 by ultraviolet light, Eur. J. Biochem. 124: 539–544.PubMedGoogle Scholar
  147. 147.
    Williams, R. J. P., Moore, G. R., Robinson, M. N., and Williams, G., 1984, The properties of cytochrome-c, Abstracts of Papers, 8th International Biophysics Congress, Bristol, U.K., p. 191.Google Scholar
  148. 148.
    Hui Bon Hoa, G., Begard, E., Debey, P., and Gunsalus, I. C., 1978, Two univalent electron transfers from putidaredoxin to bacterial cytochrome P-450ca, at subzero temperature, Biochemistry 17: 2835–2839.Google Scholar
  149. 149.
    Gould, P., Gelb, M., and Sligar, S. G., 1981, Interaction of 5-bromocamphor with cytochrome P-450cam, J. Biol. Chem. 256: 6686–6691.PubMedGoogle Scholar
  150. 150.
    Murray, R., Fisher, M., Debrunner, P., and Sligar, S., 1985, Structure and chemistry of cytochrome P-450, in: Metalloproteins, Volume I ( P. Harrison, ed.), Macmillian & Co., London, pp. 157–206.Google Scholar
  151. 151.
    Schwarze, W., Blanck, J., Ristau, O., Jänig, G. R., Pommerening, K., Rein, H., and Ruckpaul, K., 1985, Spin state control of cytochrome P-450 reduction and catalytic activity in a reconstituted P-450LM2 system as induced by a series of benzphetamine analogues, Chemico-Biot Interact., in press.Google Scholar
  152. 152.
    Cole, P., and Sligar, S. G., 1981, Temperature-jump measurement of the spin state relaxation rate of cytochrome P-450cam, FEBS Lett 133: 252–254.PubMedGoogle Scholar
  153. 153.
    Tamburini, P. P., Gibson, G. G., Backes, W. L., Sligar, S. G., and Schenkman, J. B., 1984, Reduction kinetics of purified rat liver cytochrome P-450: Evidence for a sequential reaction mechanism dependent on the hemoprotein spin state, Biochemistry 23: 4526–4533.PubMedGoogle Scholar
  154. 154.
    White, R. E., McCarthy, M., Egeberg, K. D., and Sligar, S. G., 1984, Regioselectivity in the cytochromes P-450: Control by protein constraints and by chemical reactivities, Arch. Biochem. Biophys. 228: 493–502.PubMedGoogle Scholar
  155. 155.
    Sharrock, M., Debrunner, P. G., Schultz, C., Lipscomb, J. D., Marshall, V., and Gunsalus, I. C., 1976, Cytochrome P-450Cam and its complexes: Mossbauer parameters of the heure iron, Biochim. Biophys. Acta 420: 8–26.PubMedGoogle Scholar
  156. 156.
    Schejter, A., Aviram, I., and Goldkorn, T., 1980, The contribution of electrostatic factors to the oxidation—reduction potentials of c-type cytochromes, in: Electron Transport and Oxygen Utilization ( E. C. Ho, ed.), Elsevier, Amsterdam, pp. 95–99.Google Scholar
  157. 157.
    Lewis, B. A., and Sligar, S. G., 1983, Structural studies of cytochrome P-450 using small angle X-ray scattering, J. Biol. Chem. 258: 3599–3601.PubMedGoogle Scholar
  158. 158.
    Visser, A. J. W. G., Li, T. M., Drickamer, H. G., and Weber, G., 1977, Volume changes in the formation of internal complexes of flavinyltryptophan peptides, Biochemistry 16: 4883–4886.PubMedGoogle Scholar
  159. 159.
    Weber, G., and Drickamer, H. G., 1983, The effect of high pressure upon proteins and other biomolecules, Q. Rev. Biophys. 16: 89–112.PubMedGoogle Scholar
  160. 160.
    Ogunmula, G. B., Zipp, A.,Chen, F., and Kauzmann, W., 1977, Effects of pressure on visible spectra of complexes of myoglobin, hemoglobin, cytochrome c, and horseradish peroxidase, Proc. Natl. Acad. Sci. USA 74: 1–4.Google Scholar
  161. 161.
    Hui Bon Hoa, G., and Marden, M. C., 1982, The pressure dependence of the spin equilibrium in camphor-bound ferric cytochrome P-450, Eur. J. Biochem. 124: 31 1315.Google Scholar
  162. 162.
    Marden, M. C., and Hui Bon Hoa, G., 1982, Dynamics of the spin transition in camphor-bound ferric cytochrome P-450 versus temperature, pressure and viscosity, Eur. J. Biochem. 129: 111–117.PubMedGoogle Scholar
  163. 163.
    Gibson, Q., and Carey, F., 1975, Effect of pressure on the absorption spectrum of some heure compounds, Biochem. Biophys. Res. Commun. 67: 747–751.PubMedGoogle Scholar
  164. 164.
    Heremans, K., 1980, Biophysical chemistry at high pressure, Rev. Phys. Chem Jpn. 50: 259–273.Google Scholar
  165. 165.
    Sligar, S. G., and Gunsalus, I. C., 1979, Proton coupling in the cytochrome P-450 spin and redox equilibria, Biochemistry 18: 2290–2295.PubMedGoogle Scholar
  166. 166.
    Messana, C., Cerdonia, M., Shenkin, P., Noble, R. W., Fermi, G. Perutz, R. N., and Perutz, M. F., 1978, Influence of quaternary structure of the globin on thermal spin equilibria in different methemoglobin derivatives, Biochemistry 17: 3652–3661.Google Scholar
  167. 167.
    Morishima, I., Ogawa, S., and Yamada, H., 1980, High pressure proton nuclear magnetic resonance studies of hemoprotein: Pressure-induced structural change in heure environments of myoglobin, hemoglobin and horseradish peroxidase, Biochemistry 19: 1569–1575.PubMedGoogle Scholar
  168. 168.
    Fisher, M. T., Scarlata, S. F., and Sligar, S. G., 1985, High pressure investigation of cytochrome P-450cam spin and substrate binding equilibria, Arch. Biochem. Biophys. 240: 456–463.PubMedGoogle Scholar
  169. 169.
    Ruckpaul, K., Rein, H., Ballou, D. P., and Coon, M. J., 1980, Analysis of interactions among purified components of the liver microsomal cytochrome P-450 containing monoxygenase system by second derivative spectroscopy, Biochim. Biophys. Acta 626: 4156.Google Scholar
  170. 170.
    Janig, G. R., Dettmer, R., Usanov, S. A., and Ruckpaul, K., 1983, Identification of the ligand trans to thiolate in cytochrome P-450LM2 by chemical modification, FEBS Lett. 159: 58–62.PubMedGoogle Scholar
  171. 171.
    Janig, G. R., Makower, A., Rabe, H., Bernhardt, R., and Ruckpaul, K., 1984, Chemical characterization of cytochrome P-450LM2: Characterization of tyrosine as axial heure iron ligand trans to thiolate, Biochim. Biophys. Acta 787: 8–18.PubMedGoogle Scholar
  172. 172.
    Dawson, J. H., Andersson, L. A., and Sono, M., 1982, Spectroscopic investigations of ferric cytochrome P-450cam ligand complexes, J. Biol. Chem. 257: 3606–3617.PubMedGoogle Scholar
  173. 173.
    Ragone, R., Colonna, G., Balestrieri, C., Servillo, L., and Irace, G., 1984, Determination of tyrosine exposure in proteins by second-derivative spectroscopy, Biochemistry 23: 1871–1875.PubMedGoogle Scholar
  174. 174.
    Servillo, L., Colonna, G., Balestrieri, C., Ragone, R., and Irace, G., 1982, Simultaneous determination of tyrosine and typtophan residues in proteins by second-derivative spectroscopy, Anal. Biochem. 126: 251–257.PubMedGoogle Scholar
  175. 175.
    Lang, R., Bonfils, C., and Debey, P., 1977, The low spin to high spin transition of camphor bound cytochrome P-450, Eur. J. Biochem. 79: 623–628.Google Scholar
  176. 176.
    Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6-A crystal structure of Pseudomonas putidacytochrome P-450, J. Biol. Chem., in press.Google Scholar
  177. 177.
    Gunsalus, I. C., 1968, A soluble methylene hydroxylase system: Structure and role of cytochrome P-450cam and iron—sulfur protein components, Hoppe-Seylers Z. Physiol. Chem. 349: 1610–1613.PubMedGoogle Scholar
  178. 178.
    Gunsalus, 1. C., Tyson, C. A., and Lipscomb, J. D., 1973, Cytochrome P-450 reduction and oxygenation systems, in: Oxidases and Related Redox Systems, Volume 2 (T. E. King, H. S. Mason, and M. Morrison, eds.), University Park Press, Baltimore, pp. 583–603.Google Scholar
  179. 179.
    Ishimura, Y., Ullrich, V., and Peterson. J. A., 1971, Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylation, Biochem. Biophys. Res. Commun. 42: 140–146.PubMedGoogle Scholar
  180. 180.
    Tyson, C. A.. Tsai, R., and Gunsalus, I. C.. 1970, Fast reaction studies on the camphor P-450 hydroxylase system, JAm. Oil. Chem. Soc. 47: 343A - 344A.Google Scholar
  181. 181.
    Peterson, J. A., Ishimura, Y., and Griffin, B. W., 1972, Pseudomonas putida cytochrome P-450: Characterization of an oxygenated form of the hemeprotein, Arch Biochem. Biophys. 149: 197–208.Google Scholar
  182. 182.
    Estabrook, R. W., Hildebrandt, A. G., Baron, J., Netter, K. J., and Leibman, K., 1971, A new spectral intermediate associated with cytochrome P-450 function in liver microsomes, Biochem. Biophys. Res. Commun. 42: 132–139.PubMedGoogle Scholar
  183. 183.
    Sligar, S. G., Lipscomb, J. D., Debrunner, P. G., and Gunsalus, I. C., 1974, Superoxide anion production by the autoxidation of cytochrome P-450cam, Biochem. Biophys. Res. Commun 61: 290–296.PubMedGoogle Scholar
  184. 184.
    Eisenstein, L., Debey, P., and Douzou, P., 1977, P-450cam: Oxygenated complexes stabilized at low temperature, Biochem. Biophys. Res. Commun. 77: 1377–1383.Google Scholar
  185. 185.
    Guengerich, F. P., Ballou, D. P., and Coon, M. J., 1976, Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 70: 951–956.PubMedGoogle Scholar
  186. 186.
    Larroque, C., and VanLier, J. E., 1980, The subzero temperature stabilized oxyferro complex of purified cytochrome P-4505cc, FEBS Lett 115: 175–177.PubMedGoogle Scholar
  187. 187.
    Bonfils, C., Andersson, K. K., Maurel, P., and Debey, P., 1980, Cytochrome P-450 oxygen intermediates and reactivity at subzero temperatures, J. Mol. Cata. 7: 299–308.Google Scholar
  188. 188.
    Gunsalus, I. C., Sligar, S. G., and Debrunner, P. G., 1975, Product formation from ferrous oxy-cytochrome P-450, Biochem. Soc. Trans. 3: 821–835.Google Scholar
  189. 189.
    Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J., and Gunsalus, I. C., 1976, Autoxidation and hydroxylation reactions of oxygenated cytochrome P-450cam, J. Biol. Chem. 251: 1116–1124.PubMedGoogle Scholar
  190. 190.
    Hamilton, G. A. 1974, Chemical models and mechanisms for oxygenases, in: Molecular Mechanism of Oxygen Activation ( O. Hayaishi, ed.), Acadmenic Press, New York, pp. 405–451.Google Scholar
  191. 191.
    Hamilton, G. A., 1964, Oxidation by molecular oxygen. II. The oxygen atom transfer mechanism for mixed-function oxidases and the model for mixed-function oxidases, J. Am. Chem. Soc. 86: 3391–3392.Google Scholar
  192. 192.
    Groves, J. T., and McClusky, G. A., 1976, Aliphatic hydroxylation via oxygen rebound: Oxygen transfer catalyzed by iron, J. Am. Chem. Soc. 98: 859–861.Google Scholar
  193. 193.
    Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450: Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedGoogle Scholar
  194. 194.
    Groves, J. T., Nemo, T. E., and Myers, R. S., 1979, Hydroxylation and epoxidation catalyzed by iron—porphine complexes: Oxygen transfer from idosylbenzene, J. Am. Chem. Soc. 101: 1032–1033.Google Scholar
  195. 195.
    Chang, C. K., and Kuo, M.-S., 1979, Reaction of iron (III) porphyrins and iodosylxylene: The active oxene complex of cytochrome P-450, J. Am. Chem. Soc. 101: 3413–3415.Google Scholar
  196. 196.
    Hill, C. L., and Schardt, B. C., 1980, Alkane activation and functionalization under mild conditions by a homogeneous manganese (III) porphyrin iodosylbenzene oxidizing system, JAm. Chem. Soc. 102: 6374–6375.Google Scholar
  197. 197.
    Groves, J. T., Kruper, W. J., Jr., and Haushalter, R. C., 1980, Hydrocarbon oxidations with oxometalloporphinates: Isolation and reactions of a (porphinato) manganese (V) complex, J. Am. Chem. Soc, 102: 6375–6377.Google Scholar
  198. 198.
    Sligar, S. G., Shastry, B. S., and Gunsalus, I. C., 1977, Oxygen reactions of the P450 heme protein, in: Microsomes and Drug Oxidations (V. Ullrich, I. Roots, A. Holdebrandt, R. W., Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, N.Y., pp. 202–209.Google Scholar
  199. 199.
    Kadlubar, F. F., Morton, K. C., and Ziegler, D. M., 1973, Microsomal catalyzed hydroperoxide-dependent C-oxidation of amines, Biochem. Biophys. Res. Commun. 54: 1255–1261.PubMedGoogle Scholar
  200. 200.
    Rahimtula, A. D., and O’Brien, P. J., 1974, Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P-450, Biochem. Biophys. Res. Commun. 60: 440–447.PubMedGoogle Scholar
  201. 201.
    Hrycay, E. G., Gustafsson, J.-A., Ingelman-Sundberg, M., and Ernster, L., 1975, Sodium periodate, sodium chlorite, organic hydroperoxides, and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450, Biochem. Biophys. Res. Commun. 66: 209–216.PubMedGoogle Scholar
  202. 202.
    Lichtenberger, F., Nastainczyk, W., and Ullrich, V., 1976, Cytochrome P-450 as an oxene transferase, Biochem. Biophys. Res. Commun. 70: 939–946.PubMedGoogle Scholar
  203. 203.
    Burka, L. T., Thorsen, A., and Guengerich, P., 1980, Enzymatic monooxygenation of halogen atoms: Cytochrome P-450 catalyzed oxidation of iodobenzene by iodosobenzene, J. Am. Chem. Soc. 120: 7615–7616.Google Scholar
  204. 204.
    Heimbrook, D. C., and Sligar, S. G., 1981, Multiple mechanisms of cytochrome P450-catalyzed substrate hydroxylations, Biochem. Biophys. Res. Commun. 99: 530535.Google Scholar
  205. 205.
    MacDonald, T. L, Burka, L. T., Wright, S. T., and Guengerich, F. P., 1982, Mechanisms of hydroxylation by cytochrome P-450: Exchange of iron—oxygen intermediates with water, Biochem. Biophys. Res. Commun. 104: 620–625.PubMedGoogle Scholar
  206. 206.
    Wagner, G. C., Palcic, M. M., and Dunford, H. B., 1983, Absorption spectra of cytochrome P-450cam in the reaction with peroxy acids, FEBS Lett 156: 244–248.PubMedGoogle Scholar
  207. 207.
    Rahimtula, A. D., O’Brien, P. J., Hrycay, E. G., Peterson, J. A., and Estabrook, R. W., 1974, Possible higher valence states of cytochrome P-450 during oxidative reactions, Biochem. Biophys. Res. Commun. 60: 695–702.PubMedGoogle Scholar
  208. 208.
    Hrycay, E. G., Gustafsson, J.-A., Ingelman-Sundberg, M., and Ernster, L., 1976, The involvement of cytochrome P-450 in hepatic microsomal steroid hydroxylation reactions supported by sodium periodate, sodium chlorite, and organic hydroperoxides, Eur. J. Biochem. 61: 43–52.PubMedGoogle Scholar
  209. 209.
    Coon, M. J., Blake, R. C., II, Oprian, D. D., and Ballou, D. P., 1979, Mechanistic studies with purified components of the liver microsomal hydroxylation system: Spectral intermediates in reaction of cytochrome P-450 with peroxy compounds, Acta Biol. Med Ger. 38: 449–458.PubMedGoogle Scholar
  210. 210.
    Gelb, M. H., Toscano, W. A., Jr., and Sligar, S. G., 1982, Chemical mechanisms for cytochrome P-450 oxidation: Spectral and catalytic properties of a manganese-substituted protein, Proc. Natl. Acad. Sci. USA 79: 5758–5762.PubMedGoogle Scholar
  211. 211.
    Gelb, M. H., Malkonen, R., and Sligar, S. G., 1982, Cytochrome P-450cam catalyzed epoxidation of dehydrocamphor, Biochem. Biophys. Res. Commun. 104: 853–858.PubMedGoogle Scholar
  212. 212.
    Debey, P., and Balny, C., 1978, Light-activated reactions in bacterial cytochrome P450 cycle: A study at subzero temperatures, Biochem. Soc. Trans. 6: 1289–1292.PubMedGoogle Scholar
  213. 213.
    Sligar, S. G., Debrunner, P. G., Lipscomb, J. D., Namtvedt, M. J., and Gunsalus, I. C., 1974, A role of the putidaredoxin COOH-terminus in P-450cam (cytochrome m) hydroxylations, Proc. Natl. Acad. Sci. USA 71: 3906–3910.PubMedGoogle Scholar
  214. 214.
    Sligar, S. G., Kennedy, K. A., and Pearson, D. C., 1980, Tetrahedral intermediates in cytochrome P-450 hydroxylations, in: Microsomes, Drug Oxidations, and Chemical Carcinogenesis ( M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), Academic Press, New York, pp. 391–393.Google Scholar
  215. 215.
    Sligar, S., Besman, M., Gelb, M., Gould, P., Heimbrook, D., and Person, D., 1980, Occurrence and role of an acyl-peroxide intermediate in oxygen dependent P-450 hydroxylations, in: Biochemistry, Biophysics and Regulations of Cytochrome P-450 ( J.-A. Gustafsson, J. Carlstedt-Duke, A. Mode, and J. Rafter, eds.), Elsevier/NorthHolland, Amsterdam, 379–382.Google Scholar
  216. 216.
    Sligar, S. G., Kennedy, K. A., and Pearson, D. C., 1980, Chemical mechanisms for cytochrome P-450 hydroxylation: Evidence for acylation of heme-bound dioxygen, Proc. Natl. Acad. Sci. USA 77: 1240–1244.PubMedGoogle Scholar
  217. 217.
    Heimbrook, D. C., 1983, Active oxygen of cytochrome P-450, Ph.D. dissertation, Yale University, New Haven.Google Scholar
  218. 218.
    Groves, J. T., Watanabe, Y., and McMurry, T. J., 1983, Oxygen activation by metalloporphyrins: Formation and decomposition of an acylperoxymanganese (III) complex, J. Am. Chem. Soc. 105: 4489–4490.Google Scholar
  219. 219.
    Elbe, K. S., and Dawson, J. H., 1984, NADH and oxygen dependent multiple turnovers of cytochrome P-450cam without putidaredoxin and putidaredoxin reductase, Biochemistry 23: 2068–2073.Google Scholar
  220. 220.
    Blake, R. C., II, and Coon, M. J., 1980, On the mechanism of action of cytochrome P-450: Spectral intermediates in the reaction of P-450LM2 with peroxy compounds, J. Biol. Chem. 255: 4100–4111.PubMedGoogle Scholar
  221. 221.
    White, R. E., Sligar, S. G., and Coon, M. J., 1980, Evidence for a homolytic mechanism of peroxide oxygen—oxygen bond cleavage during substrate hydroxylation by cytochrome P-450, J. Biol. Chem. 255: 11108–11111.PubMedGoogle Scholar
  222. 222.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedGoogle Scholar
  223. 223.
    McCarthy, M.-B., and White, R. E., 1983, Competing modes of peroxyacid flux through cytochrome P-450, J. Biol. Chem. 258: 11610–11616.PubMedGoogle Scholar
  224. 224.
    Blake, R. C., II, and Coon, M. J., 1981, On the mechanism of action of cytochrome P-450: role of peroxy spectral intermediates in substrate hydroxylation, J. Biol. Chem. 256: 5755–5763.PubMedGoogle Scholar
  225. 225.
    Blake, R. C., II, and Coon, M. J., 1981, On the mechanism of action of cytochrome P-450: Evaluation of homolytic and heterolytic mechanisms of oxygen—oxygen bond cleavage during substrate hydroxylation by peroxides, J. Biol. Chem. 256: 12127–12133.PubMedGoogle Scholar
  226. 226.
    Lee, W. A., and Bruice, T. C., 1985, Homolytic and heterolytic oxygen—oxygen bond scissions accompanying oxygen transfer to iron (III) porphyrins by percarboxylic acids and hydroperoxides: A mechanistic criterion for peroxidase and cytochrome P-450, J. Am. Chem. Soc. 107: 513–514.Google Scholar
  227. 227.
    Sligar, S. G., Gelb, M. H., and Heimbrook, D. C., 1984, Bio-organic chemistry and cytochrome P-450 dependent catalysis, Xenobiotica 14: 63–86.PubMedGoogle Scholar
  228. 228.
    Fort, R. C., and Schleyer, P. Von R., 1964, Adamantane: Consequences of the diamondoid structure, Chem. Rev. 64: 277–300.Google Scholar
  229. 229.
    Gleicher, G. J., and Schleyer, P. Von R., 1967, Conformational analysis of bridgehead carbonium ions, J. Am. Chem. Soc. 89: 582–593.Google Scholar
  230. 230.
    Humphrey, L. B., Hodgson, B., and Pincock, R. E., 1968, Bridgehead free radical stability: The decomposition of t-butoxyperoxy esters of the 1-adamantyl, 1-bicyclo [2.2.2]octyl, and 1-norbornyl systems, Can. J. Chem. 46: 3099–3103.Google Scholar
  231. 231.
    White, R. E., Groves, J. T., and McCluskey, G. A., 1979, Electronic and steric factors in regioselective hydroxylation catalyzed by purified cytochrome P-450, Acta Biol. Med. Ger. 38: 475–482.PubMedGoogle Scholar
  232. 232.
    Gelb, M. H., Heimbrook, D. C., Malkonen, P., and Sligar, S. G., 1982, Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450cam monoxygenase system, Biochemistry 21: 370–377.PubMedGoogle Scholar
  233. 233.
    Sligar, S. G., Gelb, M. H., and Heimbrook, D. C., 1982, Bioorganic studies of the P450cam reaction mechanism, in: Microsomes, Drug Oxidations and Drug Toxicity ( R. Sato and R. Kato, eds.), Wiley—Interscience, New York, pp. 155–161.Google Scholar
  234. 234.
    Powell, M. F., Pai, E. F., and Bruice, T. C., 1984, Study of (tetraphenylporphinato) manganese (III)-catalyzed epoxidation and demethylation using p-cyano-N,N-dimethylaniline N-oxide as oxygen donor in a homogeneous system: Kinetics, radiochemical ligation studies, and reaction mechanism for a model of cytochrome P-450, J. Am. Chem. Soc. 106: 3277–3285.Google Scholar
  235. 235.
    Burstein, S., and Gut, M., 1976, Intermediates in the conversion of cholesterol to pregnenolone: Kinetics and mechanism, Steroids 29: 115–131.Google Scholar
  236. 236.
    Burstein, S., Nickolsen, R. C., Byon, C. Y., Kimball, H. L., and Gut, M., 1977, Specificity of the cholesterol side-chain cleavage enzyme system of adrenal cortex, Steroids 30: 439–453.PubMedGoogle Scholar
  237. 237.
    Byon, C. Y., and Gut, M., 1980, Steric considerations regarding the biodegradation of cholesterol to pregnenolone: Exclusion of (22S)-22-hydroxycholesterol and 22-ketocholesterol as intermediates, Biochem. Biophys. Res. Commun. 94: 549–552.PubMedGoogle Scholar
  238. 238.
    Carter, S. K., Crooke, S. T., and Umezawa, H. (eds.), 1978, Bleomycin: Current Status and New Developments, Academic Press, New York.Google Scholar
  239. 239.
    Hecht, S. M. (ed.), 1979, Bleomycin: Chemical, Biochemical and Biological Aspects, Springer-Verlag, Berlin.Google Scholar
  240. 240.
    Burger, R. M., Peisach, J., and Horwitz, S. B., 1981, Mechanism of bleomycins: In vitro studies, Life Sci 28: 715–727.PubMedGoogle Scholar
  241. 241.
    Povirk, L. F., 1983, Bleomycin, in: Molecular Aspects of Anti-Cancer Drug Action ( S. Neidle and M. J. Waring, eds.), Macmillan & Co., London, pp. 157–182.Google Scholar
  242. 242.
    Fujii, A., Takita, T., Maeda, K., and Umezawa, H., 1973, Chemistry of bleomycin. Xl. Structure of the terminal amines, J. Antibiot. 26: 398–399.PubMedGoogle Scholar
  243. 243.
    Crooke, S. T., and Bradner, W. T., 1977, Bleomycin: A review, J. Med. (Westbury, NY.) 1: 333–428.Google Scholar
  244. 244.
    Freedman, M. A.. 1978, A review of the bleomycin experience in the United States, Recent Results Cancer Res 63: 152–178.Google Scholar
  245. 245.
    Umezawa, H., Maeda, K., Takeuchi, T., and Okami, Y., 1966, New antibiotics, bleomycin A and B, J. Antibiot. SerA 19: 200–209.Google Scholar
  246. 246.
    Umezawa, H., Suhara, Y., Takeuchi, T., and Okami, Y., 1966, Purification of bleomycins, J. Antibiot. 19: 210–215.PubMedGoogle Scholar
  247. 247.
    Ishizuka, M., Takayama, H., Takeuchi, T., and Umezawa, H., 1967, Activity and toxicity of bleomycin, J. Antibiot. Ser. A 20: 15–24.Google Scholar
  248. 248.
    Suzuki, H., Nagai, K., Yamaki, H., Tanaka, N., and Umezawa, H., 1968, Mechanism of action of bleomycin: Studies with the growing culture of bacterial and tumor cells, J. Antibiot. 21: 379–386.PubMedGoogle Scholar
  249. 249.
    Umezawa, H., 1977, Recent studies on bleomycin, Lloydia 40: 67–81.PubMedGoogle Scholar
  250. 250.
    Onishi, T., Iwata, H., and Takagi, V., 1975, Effects of reducing and oxidizing agents on the action of bleomycin, J. Biochem. 77: 745–752.PubMedGoogle Scholar
  251. 251.
    Sausville, E. A., Peisach, J., and Horwitz, S. B., 1976, A role of ferrous ion and oxygen in the degradation of DNA by bleomycin, Biochem. Biophys. Res. Commun. 73: 814–822.PubMedGoogle Scholar
  252. 252.
    Sausville, E. A., Peisach, J., and Horwitz, S. B., 1978, Effect of chelating agents and metal ions on the degradation of DNA by bleomycin, Biochemistry 17: 2740–2746.PubMedGoogle Scholar
  253. 253.
    Sausville, E. A., Stein, R. W., Peisach, J., and Horwitz, S. B., 1978, Properties and products of the degradation of DNA by bleomycin and iron (11), Biochemistry 17: 2746 2754.Google Scholar
  254. 254.
    Chang, C.-H., and Meares, C. F., 1982, Light-induced nicking of deoxyribonucleic acid by cobalt (I11) bleomycins, Biochemistry 21: 6332–6334.PubMedGoogle Scholar
  255. 255.
    Chang, C.-H., and Meares, C. F., 1984, Cobalt-bleomycins and deoxyribonucleic acid: Sequence-dependent interactions, action spectrum for nicking, and indifference to oxygen, Biochemistry 23: 2268–2274.PubMedGoogle Scholar
  256. 256.
    Barton, J. K., and Raphael, A. L., 1984, Photoactivated stereospecific cleavage of double-helical DNA by cobalt (III) complexes, J. Am. Chem Soc. 106: 2466–2468.Google Scholar
  257. 257.
    Ehrenfeld, G., Murugesan, N., and Hecht, S., 1984, Activation of oxygen and mediation of DNA degradation by manganese-bleomycin, Inorg. Chem. 23: 1496–1498.Google Scholar
  258. 258.
    Burger, R. M., Freedman, J. H., Horwitz, S. B., and Peisach, J., 1984, DNA degradation by manganese (II)-bleomycin plus peroxide, Inorg. Chem. 23: 2215–2217.Google Scholar
  259. 259.
    Takita, T., Muraoka, Y., Nakatani, T., Fujii, A., Umezawa, Y., Naganawa, H., and Umezawa, H., 1978, Chemistry of bleomycin, XIX. Revised structures of bleomycin and phleomycin, J. Antibiot. 31: 801–804.PubMedGoogle Scholar
  260. 260.
    Takita, T., 1978, Review of the structural studies on bleomycin, in: Bleomycin: Chemical, Biochemical and Biological Aspects ( S. M. Hecht, ed.), Springer-Verlag, Berlin, pp. 37–47.Google Scholar
  261. 261.
    Nunn, A. D., 1976, Interactions between bleomycins and metals, J. Antibiot. 29: 1102 1108.Google Scholar
  262. 262.
    Dabrowiak, J. C., 1980, The coordination chemistry of bleomycin: A review, J. Inorg. Biochem. 13: 317–337.Google Scholar
  263. 263.
    Burger, R. M., Horwitz, S. B., Peisach. J., and Wittenberg, J. B., 1979, Oxygenated iron bleomycin: A short-lived intermediate in the reaction of ferrous bleomycin with 02, J. Biol. Chem. 254: 12299–12302.Google Scholar
  264. 264.
    Burger, R. M., Kent, T. A., Horwitz, S. B., Münck, E., and Peisach, J., 1983, Mossbauer study of iron bleomycin and its activation intermediates, J. Biol. Chem. 258: 1559 1564.Google Scholar
  265. 265.
    Burger, R. M., Peisach, J., Blumberg, W. E., and Horwitz, S. B., 1979, Iron-bleomycin interactions with oxygen and oxygen analogues: Effects on spectra and drug activity, J. Biol. Chem. 254: 10906–10912.PubMedGoogle Scholar
  266. 266.
    Sugiura, Y., 1978, Oxygen binding to cobalt (III)-bleomycin, J. Antibiot. 31: 1206–1208.PubMedGoogle Scholar
  267. 267.
    Sugiura, Y., 1980, Monomeric cobalt (II)-oxygen adducts of bleomycin antibiotics in aqueous solution: A new ligand type for oxygen binding and effect of axial Lewis base, JAm. Chem. Soc. 102: 5216–5221.Google Scholar
  268. 268.
    Chevion, M., Peisach, J., and Blumberg, W. E., 1977, Imidazole, the ligand trans to mercaptide in ferric cytochrome P-450: An EPR study of proteins and model compounds, J. Biol. Chem. 252: 3637–3645.PubMedGoogle Scholar
  269. 269.
    Sharrock, M. Münck, E., Debrunner. P. G., Marshall, V., Lipscomb, J. D., and Gunsalus, I. C., 1973, Mossbauer studies of cytochrome P-450„,m, Biochemistry 12: 258–265.PubMedGoogle Scholar
  270. 270.
    Champion, P. M., Lipscomb, J. D., Münck, E., Debrunner, P., and Gunsalus, I. C., 1975, Mossbauer investigations of high-spin ferrous heme proteins. 1. Cytochrome P450, Biochemistry 14: 4151–4158.PubMedGoogle Scholar
  271. 271.
    Dabrowiak, J. C., 1982, Bleomycin, Adv. Inorg. Biochem. 4: 69–113.Google Scholar
  272. 272.
    Burger, R. M., Peisach, J., and Horwitz, S. B., 1981, Activated bleomycin: A transient complex of drug, iron and oxygen that degrades DNA, J. Biol. Chem. 256: 116361 1644.Google Scholar
  273. 273.
    Sugiura, Y., Suzuki, T., Muraoka, Y., Umezawa, Y., Takita, T., and Umezawa, H., 1981, Deglyco-bleomycin-iron complexes: Implications for iron-binding site and role of the sugar portion in bleomycin antibiotics, J. Antibiot. 39: 1232–1235.Google Scholar
  274. 274.
    Kuramochi, H., Katsutoshi, T., Takita, T., and Umezawa, H., 1981, An active intermediate formed in the reaction of bleomycin-Fe (II) complex with oxygen, J. Antibiot. 34: 576–582.PubMedGoogle Scholar
  275. 275.
    Iyanagi, T., Anon, F. K., Imai, Y., and Mason, H. S., 1978, Studies on the microsomal mixed function oxidase system: Redox properties of detergent-solubilized NADPHcytochrome P-450 reductase, Biochemisty 17: 2224–2230.Google Scholar
  276. 276.
    Giloni, L., Takeshita, M., Johnson, F., Iden, C., and Grollman, A. P., 1981, Bleomycininduced strand scission of DNA: Mechanism of deoxyribose cleavage, J. Biol. Chem. 256: 8608–8615.PubMedGoogle Scholar
  277. 277.
    Wu, J. C., Kozarich, J. W., and Stubbe, J., 1983, The mechanism of free base formation from DNA by bleomycin, J. Biol. Chem. 258: 4694–4697.PubMedGoogle Scholar
  278. 278.
    Oberley, L. W., and Buettner, G. R., 1979, The production of hydroxyl radical by bleomycin and iron (II), FEBS Lett 97: 47–49.Google Scholar
  279. 279.
    Sugiura, Y., and Kikuchi, T., 1978, Formation of superoxide and hydroxy radicals in iron (III)-bleomycin-oxygen system: Electron spin resonance detection by spin trapping, J. Antiobiot. 31: 1310–1312.Google Scholar
  280. 280.
    Sugiura, Y., 1979, The production of hydroxyl radical from copper (I) complex systems of bleomycin and tallysomycin: Comparsion with copper (I1) and iron (11) systems, Biochem. Biophys. Res. Commun. 90: 375–383.PubMedGoogle Scholar
  281. 281.
    Muller, W. W. G., Yamazaki, Z. I., Breter, H. J., and Zahn, R. K., 1972, Action of bleomycin on DNA and RNA, Eur. J. Biochem. 31: 518–525.PubMedGoogle Scholar
  282. 282.
    Ishida, R., and Takahashi, T., 1975, Increased DNA chain breakage by combined action of bleomycin and superoxide radical, Biochem. Biophys. Res. Commun. 66: 1432–1438.PubMedGoogle Scholar
  283. 283.
    Lown, J. W., and Sim, S. K., 1977, The mechanism of the bleomycin-induced cleavage of DNA, Biochem. Biophys. Res. Commun. 77: 1150–1157.PubMedGoogle Scholar
  284. 284.
    Rodriguez, L. O., and Hecht, S. M., 1982, Iron (II)-bleomycin: Biochemical and spectral properties in the presence of radical scavengers, Biochem. Biophys. Res. Commun. 104: 1470–1476.PubMedGoogle Scholar
  285. 285.
    Cunningham, M. L., Ringrose, P. S., and Lokesh, B. R., 1983, Bleomycin cytotoxicity is prevented by superoxide dismutase in vitro, Cancer Lett 21: 149–153.Google Scholar
  286. 286.
    Cunningham, M. S., Ringrose, P. S., and Lokesh, B. R., 1984, Inhibition of the genotoxicity of bleomycin by superoxide dismutase, Mutat. Res. 135: 199–202.PubMedGoogle Scholar
  287. 287.
    Murugesan, N., Ehrenfeld, G. M., and Hecht, S. M., 1982, Oxygen transfer from bleomycin—metal complexes, J. Biol. Chem. 257: 8600–8603.PubMedGoogle Scholar
  288. 288.
    Antholine, W. E., and Petering, D. H., 1979, On the reaction of iron bleomycin with thiols and oxygen, Biochem. Biophys. Res. Commun. 90: 384–389.PubMedGoogle Scholar
  289. 289.
    Povirk, L. F., 1979, Catalytic release of deoxyribonucleic acid bases by oxidation and reduction of an iron—bleomycin complex, Biochemistry 18: 3989–3995.PubMedGoogle Scholar
  290. 290.
    Scheulen, M. E., Kappus, H., Thyssen, D., and Schmidt, C. G., 1982, DNA chain breakage by bleomycin in the presence of ferric ions and NADPH-cytochrome P-450 reductase, in: Microsomes, Drug Oxidations and Drug Toxicity ( R. Sato and R. Kato, eds.), Wiley—Interscience, New York, pp. 553–554.Google Scholar
  291. 291.
    Scheulen, M. E., Kappus, H., Thyssen, D., and Schmidt, C. G., 1982, Redox cycling of iron (III)-bleomycin by NADPH-cytochrome P-450 reductase, Biochem. Pharmacol. 30: 3385–3388.Google Scholar
  292. 292.
    Scheulen, M. E., and Kappus, H., 1983, The activation of oxygen by bleomycin is catalyzed by NADPH-cytochrome P-450 reductase in the presence of iron ions and NADPH, in: Oxygen Radicals in Chemistry and Biology, Proceedings 3rd International Conference (W. Bors, M. Saran, and D. Tart, eds.), de Gruyter, Berlin, pp. 425–433.Google Scholar
  293. 293.
    Kilkuskie, R. E., MacDonald, T. L., and Hecht, S. M., 1984, Bleomycin may be activated for DNA cleavage by NADPH-cytochrome P-450 reductase, Biochemistry 23: 6165–6171.PubMedGoogle Scholar
  294. 294.
    Garneir-Suillerot, A., Albertini, J.-P., and Tosi, L., 1981, Mononuclear and binuclear Co (III)-dioxygen adducts of bleomycin: Circular dichroism and electron paramagnetic resonance studies, Biochem. Biophys. Res. Commun. 102: 499–506.Google Scholar
  295. 295.
    Wagner, G. C., Gunsalus, I. C., Wang, M.-Y. R., and Hoffman, B. M., 1981, Cobalt-substituted cytochrome P-450cam, J. Biol. Chem. 256: 6266–6273.PubMedGoogle Scholar
  296. 296.
    Melnyk, D. L., Horwitz, S. B., and Peisach, J., 1981, Redox potential of iron-bleomycin, Biochemistry 20: 5327–5331.PubMedGoogle Scholar
  297. 297.
    Taylor, J. F., and Hastings, A. B., 1939, Oxidation—reduction potentials of the methemoglobin—hemoglobin system, J. Biol. Chem. 131: 649–662.Google Scholar
  298. 298.
    Feigelson, P., and Brady, F. O., 1974, Heme-containing dioxygenases, in: Molecular Mechanisms of Oxygen Activation ( O. Hayaishi, ed.), Academic Press, New York, pp. 87–133.Google Scholar
  299. 299.
    Werneke, J. M., Sligar, S. G., and Schuler, M. A., 1985, Development of broad host range vectors for expression in Pseudomonas, Genein press.Google Scholar
  300. 300.
    Sugiura, Y., Suzuki, T., Kawabe, H., Tanaka, H., and Watanabe, K., 1982, Spectroscopic studies on bleomycin-iron complexes with carbon monoxide, nitric oxide, isocyanide, azide, and cyanide and comparison with iron-porphyrin complexes. Biochim. Biophys. Acta 716: 38–44.PubMedGoogle Scholar
  301. 301.
    Sugiura, Y., Ogawa, S., and Morishima, I., 1980, Unusual interaction of iron-bleomycin with cyanide, J. Am. Chem. Soc. 102: 7945–7947.Google Scholar
  302. 302.
    Ebel, R. E., O`Keeffe, D. H., and Peterson, J. A., 1975, Nitric oxide complexes of cytochrome P-450, FEBS Lett 55: 198–201.Google Scholar
  303. 303.
    Lenkinski, R. E., Peerce, B. E., Dallas, J. L., and Glickson, J. D., 1980, Interactions of gallium (III) with bleomycin antibiotics, J. Am. Chem. Soc. 102: 131–135.Google Scholar
  304. 304.
    Lenkinski, R. E., and Dallas, J. L., 1979, An NMR investigation of the kinetics of dissociation of the zinc (II) complex of bleomycin antibiotics, JAm. Chem. Soc. 101: 5902–5906.Google Scholar
  305. 305.
    Lenkinski, R. E., Peerce, B. E., Pillai, R. P., and Glickson, J. D., 1980, Calcium (111) and the trivalent lanthanide ion complexes of the bleomycin antibiotics: Potentiometric, fluorescence and ‘H-NMR studies, J. Am. Chem. Soc. 102: 7088–7093.Google Scholar
  306. 306.
    Freedman, J. H., Horwitz, S. B., and Peisach, J., 1982, Reduction of copper (II)bleomycin: A model for in vivo drug activity, Biochemistry 21: 2203–2210.PubMedGoogle Scholar
  307. 307.
    Chang, C.-H., Dallas, J. L., and Meares, C. F., 1983, Identification of a key structural feature of cobalt (III)-bleomycins: An exogenous ligand (i.e., hydroperoxide) bound to cobalt, Biochem. Biophys. Res. Commun. 110: 959–966.PubMedGoogle Scholar
  308. 308.
    Antholine, W., Hyde, J. S., Sealy, R. C., and Petering, D. H., 1984, Structure of cupric bleomycin: Nitrogen and proton couplings from EPR and electron nuclear double resonance spectroscopy, J. Biol. Chem. 259: 4437–4440.PubMedGoogle Scholar
  309. 309.
    Oppenheimer, N. J., Rodriguez, L. O., and Hecht, S. M., 1979, Proton nuclear magnetic resonance study of the structure of bleomycin and the zinc-bleomycin complex, Biochemistry 18: 3439–3445.PubMedGoogle Scholar
  310. 310.
    Oppenheimer, N. J., Rodriguez, L. O., and Hecht, S. M., 1980, Metal binding to modified bleomycins: Zinc and ferrous complexes with an acetylated bleomycin, Biochemistry 19: 4096–4103.PubMedGoogle Scholar
  311. 311.
    Oppenheimer, N. J.. Chang, C., Rodriguez, L. O., and Hecht, S. M., 1981, Copper (I) bleomycin: A structurally unique oxidation—reduction active complex, J. Biol. Chem. 256: 1514–1517.Google Scholar
  312. 312.
    Sugiura, Y., Ishizu, K., and Miyoshi, K., 1979, Studies of metallobleomycins by electronic spectroscopy, electron spin resonance spectroscopy. and potentiometric titration, J. Antibiot. 32: 453–461.PubMedGoogle Scholar
  313. 313.
    Ishizu, K., Murata, S., Miyoshi, K., Sugiura, Y., Takita, H., and Umezawa, H., 1981, Electrochemical and ESR studies on Cu (II) complexes of bleomycin and its related compounds, J. Antibiot. 34: 994–1000.PubMedGoogle Scholar
  314. 314.
    Gunsalus, I. C., and Sligar, S. G., 1977, Oxygen reduction by the P-450 monoxygenase system, Adv. Enzymol. 47: 1–44.Google Scholar
  315. 315.
    Groves, J. T., and Kruper, W. J., Jr., 1979, Preparation and characterization of an oxoporphinatochromium (V) complex, J. Am. Chem. Soc. 101: 7613–7615.Google Scholar
  316. 316.
    Smegal, J. A., and Hill, C. L., 1983, Synthesis, characterization, and reaction chemistry to a bis(iodosylbenzene)-metalloporphyrin complex, [Ph1(OAc)O]2Mn’vTPP: A complex possessing a five-electron oxidation capability, J. Am. Chem. Soc. 105: 2920–2922.Google Scholar
  317. 317.
    Collman, J. P., Brauman, J. 1., Meunier, B.. Raybuck, S. A., and Kodadek, T., 1984, Epoxidation of olefins by cytochrome P-450 model compounds: Mechanism of oxygen atom transfer, Proc. Natl. Acad. Sci. USA 81: 3245–3248.Google Scholar
  318. 318.
    Champion, P., Münck, E., Debrunner, P., Hollenberg, P.. and Hager. L. P., 1973, Mossbauer investigations of chloroperoxidase and its halide complexes. Biochemistry 12: 426–435.PubMedGoogle Scholar
  319. 319.
    Hollenberg, P. F., and Hager, L. P., 1973. The cytochrome P-450 nature of the CO complex of ferrous chloroperoxidase, J. Biol. Chem. 248: 2630–2633.PubMedGoogle Scholar
  320. 320.
    Chiang, R., Makina, R., Spomer, W. E.. and Hager, L. P., 1975, Chloroperoxidase: P-450 type absorption in the absence of sulfhydryl groups, Biochemistry 14: 4166–4171.PubMedGoogle Scholar
  321. 321.
    Champion, P. M., Chiang, R., Münck, E., Debrunner, P.. and Hager. L. P.. 1975, Mossbauer investigations of high spin ferrous heme proteins. II. Chloroperoxidase, horseradish peroxidase and hemoglobin, Biochemistry 14: 4159–4165.PubMedGoogle Scholar
  322. 322.
    Champion, P. M., Remba, R. D., Chiang, R., Fitcher, D. B., and Hager, L. P.. 1976, Resonance Raman spectra of chloroperoxidase, Biochim. Biophys. Acta 446: 486–492.PubMedGoogle Scholar
  323. 323.
    Dawson, J. H., Trudell, J. R., Barth, G., Liner, R. E., Bunnenberg, E., Djerassi, C., Chiang, R. L., and Hager, L. P., 1976, Chloroperoxidase: Evidence for P-450 type heme environment from magnetic circular dichroism spectroscopy. J. Am. Chem. Soc. 98: 3709–3710.PubMedGoogle Scholar
  324. 324.
    Remba, R. D., Champion, P. M.. Fitcher, D. B., Chiang, R., and Hager, L. P.. 1979, Resonance Raman investigations of chloroperoxidase, horseradish peroxidase and cytochrome c using Soret band laser excitation, Biochemistry 18: 2280–2290.PubMedGoogle Scholar
  325. 325.
    Hollenberg, P. F., Hager, L. P., Blumberg, W. E., and Peisach, J., 1980, An electron paramagnetic resonance study of the high and low spin forms of chloroperoxidase, J. Biol. Chem. 255: 4801–4807.PubMedGoogle Scholar
  326. 326.
    Palcic, M. M., Rutter, R., Araiso, T., Hager, L. P., and Dunford, H. B., 1980, Spectrum of chloroperoxidase compound I, Biochem. Biophys. Res. Commun. 94: 1123–1127.PubMedGoogle Scholar
  327. 327.
    Sono, M., Dawson, J. H., and Hager, L. P., 1984, The generation of a hyperporphyrin spectrum upon thiol binding to ferric chloroperoxidase: Further evidence of endogenous thiolate ligation to the ferric enzyme, J. Biol. Chem. 259: 13209–13216.PubMedGoogle Scholar
  328. 328.
    Padbury, G., and Sligar, S. G., 1985, Chemical reactivities of bleomycin, J. Biol. Chem. 260: 7820–7823.PubMedGoogle Scholar
  329. 329.
    McCarthy, M. B., and White, R. E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive intermediate, J. Biol. Chem. 258: 91539158.Google Scholar
  330. 330.
    Heimbrook, D. C., Murray, R. I., Egeberg, K. D., Sligar, S. G., Nee, M. W., and Bruice, T. C., 1984, Demethylation of N,N-dimethylaniline and p-cyano-N,N-dimethylaniline and their N-oxides by cytochromes P-450LM2 and P-450ca,,, J. Am. Chem. Soc. 106: 1514–1515.Google Scholar
  331. 331.
    Kedderis, G. L., Koop, D. R., and Hollenberg, P. F., 1980, N-Demethylation reactions catalyzed by chloroperoxidase, J. Biol. Chem. 255: 10174–10182.PubMedGoogle Scholar
  332. 332.
    Hager, L. P., Doubek, D. L., Silverstein, R. M., Lee, T. T., Thomas, J. A., Hargis, J. H., and Martin, J. C., 1973, The mechanism of oxygen evolution from peroxyacid by chloroperoxidase: A contribution to the structure of compound I, in: Oxidases and Related Redox Systems ( T. E. King, H. S. Mason, and M. Martin, eds.), University Park Press, Baltimore, pp. 311–332.Google Scholar
  333. 333.
    Hager, L. P., Morris, D. R., Brown, F. S., and Eberwein, H., 1966, Chloroperoxidase. II. Utilization of halogen anions, J. Biol. Chem. 241: 1769.PubMedGoogle Scholar
  334. 334.
    Miwa, G. T., Walsh, J. S., Kedderis, G. L., and Hollenberg, P. F., 1983, The usé of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450 and peroxidase-catalyzed N-demethylation reactions, J. Biol. Chem. 258: 14445–14449.PubMedGoogle Scholar
  335. 335.
    Guengerich, F. P., 1983, Oxidation—reduction properties of rat liver cytochromes P450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems, Biochemistry 22: 2811–2820.PubMedGoogle Scholar
  336. 336.
    White, R. E., and Coon, M. J., 1982, Heme ligand replacement reactions of cytochrome P-450: Characterization of the bonding atom of the axial ligand trans to thiolate as oxygen, J. Biol. Chem. 257: 3073–3083.PubMedGoogle Scholar
  337. 337.
    Oprian, D. D., Gorsky, L. D., and Coon, M. J., 1983, Properties of the oxygenated form of liver microsomal cytochrome P-450, J. Biol. Chem. 258: 8684–8691.PubMedGoogle Scholar
  338. 338.
    Fisher, M. T., and Sligar, S. G., 1985, Control of heure protein redox potential. Linear free energy relationship between ferric spin state and potential, J. Am. Chem. Soc. 107: 5018.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Stephen G. Sligar
    • 1
  • Ralph I. Murray
    • 1
  1. 1.Department of BiochemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations