Advertisement

Metalloporphyrin Models for Cytochrome P-450

  • Thomas J. McMurry
  • John T. Groves

Abstract

The elucidation of the molecular mechanisms of biological oxygen activation has been the focus of sustained attention for over a decade.1 In this time, cytochrome P-450 has become a Rosetta stone among the hemecontaining monooxygenases.2,3 The wide variety of oxygenations mediated by P-450 and the significance of these processes in steroid metabolism, drug detoxification, and the carcinogenic activation of polycyclic aromatic hydrocarbons have stimulated an effort to understand these processes. The selective hydroxylation of unactivated alkanes, in particular, lacks a classical paradigm in organic chemistry. Accordingly, there has been an effort to develop synthetic models of P-450 which might be used for the oxyfunctionalization of hydrocarbons. An understanding of the mechanism of these simple cases has begun to provide a conceptual base for the understanding of the enzymatic pathway.

Keywords

Iron Porphyrin Hydrogen Atom Abstraction Olefin Epoxidation Manganese Porphyrin Picket Fence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayaishi, O. (ed.), 1974, The Molecular Mechanisms of Oxygen Activation, Academic Press, New York.Google Scholar
  2. 2.
    Groves, J. T., 1979, Cytochrome P-450 and other hemecontaining oxygenases, Adv. Inorg. Biochem. 1: 119–145.Google Scholar
  3. 3.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedGoogle Scholar
  4. Guengerich, F. P., and Macdonald, T. L., 1984, Chemical mechanisms of catalysis by cytochromes P-450: A unified view, Acc. Chem. Res. 17: 916.Google Scholar
  5. Ullrich, V., 1979, Cytochrome P-450 and biological hydroxylation reactions, Top. Curr. Chem. 83: 67–104.PubMedGoogle Scholar
  6. 4.
    Hrycay, E. G., Gustafsson, J.-A., Ingelman-Sundberg, M., and Ernster, L., 1975, Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in hepatic microsomal steroid hydroxylation reactions by cytochrome P-450, FEBS Leu. 56: 161–165.Google Scholar
  7. 5.
    Lichtenberger, F., Nastainczyk, W., and Ullrich, V., 1976, Cytochrome P-450 as an oxene transferase, Biochem. Biophys. Res. Commun. 70: 939–946.PubMedGoogle Scholar
  8. 6.
    Hyrcay, E. G., Gustafsson, J., Ingelman-Sundberg, M., and Ernster, L., 1975, Sodium periodate, sodium chlorite, organic hydroperoxides, and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450, Biochem. Biophys. Res. Commun. 66: 209–216.Google Scholar
  9. 7.
    Groves, J. T., and Subramanian, D. V., 1984, Hydroxylation by cytochrome P-450 and metalloporphyrin models: Evidence for allylic rearrangement, J. Am. Chem. Soc. 106: 2177–2181.Google Scholar
  10. Groves, J. T., and Van Der Puy, M., 1974, Stereospecific aliphatic hydroxylation by an iron-based oxidant, J. Am. Chem. Soc. 96: 5274–5275.Google Scholar
  11. Groves, J. T., and McClusky, G. A., 1976, Aliphatic hydroxylation via oxygen rebound: Oxygen transfer catalyzed by iron, J. Am. Chem. Soc. 98: 859–861.Google Scholar
  12. 8.
    Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450: Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedGoogle Scholar
  13. 9.
    Miwa, G. T., Walsh, J. S., and Lu, A. Y. H., 1984, Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions: The oxidative 0-dealkylation of 7-ethoxycoumarin, J. Biol. Chem. 259: 3000–3004.PubMedGoogle Scholar
  14. 10.
    Harada, N., Miwa, G. T., Walsh, J. S., and Lu, A. Y. H., 1984, Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions: Evidence for the irreversible formation of an activated oxygen intermediate of cytochrome P-448, J. Biol. Chem. 259: 3005–3010.PubMedGoogle Scholar
  15. 11.
    Dunford, H. B., and Stillman, J. S., 1976, On the function and mechanism of action of peroxidases, Coord. Chem. Rev. 19: 187–251.Google Scholar
  16. Hewson, W. D., and Hager, L. P., 1979, Peroxides, catalases, and chloroperoxidase in: The Porphyrins, Volume VII ( D. Dolphin, ed.), Academic Press, New York, pp. 295–332.Google Scholar
  17. 12.
    Jones, P., and Wilson, I., 1978, in: Metal Ions in Biological Systems, Volume 17 (H. Sigel, ed.), Dekker, New York, p. 187.Google Scholar
  18. 13.
    Schultz, C. E., Devaney, P. W., Winkler, H., DeBrunner, P. G., Doan, N., Chiang, R., Rutter, R., and Hager, L. P., 1979, Horseradish peroxidase compound I: Evidence for spin coupling between the heme iron and the “free” radical, FEBS Lett. 103: 10 2105.Google Scholar
  19. 14.
    Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981, Electron—nuclear double resonance of horseradish peroxidase compound I: Detection of the porphyrin ii-cation radical, J. Biol. Chem. 256: 2118–2121.PubMedGoogle Scholar
  20. Roberts, J E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981, O ENDOR of horseradish peroxidase compound I, J. Am. Chem. Soc. 103: 7656–7659.Google Scholar
  21. 15.
    Penner-Hahn, J. E., McMurry, T. J., Renner, M., Latos-Grazynsky, L., Eble, K. S., Davis, I. M., Balch, A. L., Groves, J. T., Dawson, J. R., and Hodgson, K. O., 1983, X-ray absorption spectroscopic studies of high valent iron porphyrins: Horseradish peroxidase compounds I and II and synthetic models, J. Biol. Chem. 258: 12761–12764.PubMedGoogle Scholar
  22. 16.
    LaMar, G. N., deRopp, J. S., Smith, K. M., and Langry, K. C., 1981, Proton nuclear magnetic resonance investigation of the electronic structure of compound I of horseradish peroxidase, J. Biol. Chem. 256: 237–243.Google Scholar
  23. 17.
    Browlett, W. R., Gasyna, Z., and Stillman, M. J., 1983, The temperature dependence of the MCD spectrum of horseradish peroxidase of compound I, Biochem. Biophys. Res. Commun. 112: 515–520.Google Scholar
  24. 18.
    Schultz, C., Chiang, R., and DeBrunner, P. G., 1979, Mössbauer parameters of Fe’ heure proteins of spin S = 1, J. Phys. (Paris) Suppl. 40 (C2): 534–536.Google Scholar
  25. 19.
    Yonetani, T., Yamamoto, H., Erman, J. E., Leigh, J. S., and Reed, G. H., 1972, Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin—apohemoprotein complexes, J. Biol. Chem. 247: 2447–2455.PubMedGoogle Scholar
  26. 20.
    Ullrich, V., 1980, Dioxygen activation by heme—sulfur proteins, J. Mol. Catal. 7: 158–167.Google Scholar
  27. 21.
    Ochai, E.-I., 1977, Bioinorganic Chemistry, Allyn & Bacon, Rockleigh, N.J.Google Scholar
  28. 22.
    Sorrell, T. N., 1980, 37. (Dioxygen) (N-methylimidazole) [(all-cis)-5,10,15,20-tetrakis[2(2,2-dimethylpropionamido)-phenyl]porphyrinato(2-)Iiron(II), in: Inorganic Syntheses, Volume XX (D. H. Busch, ed.), Wiley, New York, pp. 161–169.Google Scholar
  29. 23.
    Collman, J. P., Gagne, R. R., Reed, C. A., Halbert, T. R., Lang, G., and Robinson, W. T., 1975, “Picket fence porphyrins.” Synthetic models for oxygen binding hemoproteins, J. Am. Chem. Soc. 97: 1427–1439.PubMedGoogle Scholar
  30. 24.
    Nemo, T. E., 1980, Epoxidation and hydroxylation catalyzed by ferric porphyrins, Ph.D. Thesis, The University of Michigan.Google Scholar
  31. Cheng, R. J., Grazynsky, L. L., and Balch, A. L., 1982, Preparation and characterization of some hydroxy complexes of iron(III) porphyrins, Inorg. Chem. 21: 2412–2418.Google Scholar
  32. 25.
    Groves, J. T., Haushalter, R. C., Nakamura, M., Nemo, T., and Evans, B. J., 1981, High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450, J. Am. Chem. Soc. 103: 2884–2886.Google Scholar
  33. 26.
    Groves, J. T., Nemo, T. E., and Myers, R. S., 1979, Hydroxylation and epoxidation catalyzed by iron-porphine complexes: Oxygen transfer from iodosylbenzene, J. Am. Chem. Soc. 101: 1032–1033.Google Scholar
  34. 27.
    Lindsay-Smith, J. R., and Sleath, P. R., 1982, Model systems for cytochrome P-450 dependent mono-oxygenases. Part 1. Oxidation of alkenes and aromatic compounds by tetraphenylporphinatoiron(III) chloride and iodosylbenzene, J. Chem. Soc. Perkin Trans. 2 1982: 1009–1015.Google Scholar
  35. Lindsay-Smith, J. R., Nee, M. W., Noar, J. B., and Bruice, T. C., 1984, Oxidation of N-nitrosodibenzylamine and related compounds by metalloporphyrin-catalyzed model systems for the cytochrome P-450 dependent mono-oxygenases, J. Chem. Soc. Perkin Trans. 2 1984: 255–260.Google Scholar
  36. Chang, C. K., and Kuo, M.-S., 1979, Reaction of iron(Ilt) porphyrins and iodosoxylene: The active oxene complex of cytochrome P-450, J. Am. Chenu. Soc. 101: 3413–3415.Google Scholar
  37. 28.
    Groves, J. T., and Myers, R. S., 1983, Catalytic asymmetric epoxidations with chiral iron porphyrins, J. Am. Chem. Soc. 105: 5791–5796.Google Scholar
  38. 29.
    Groves, J. T., and Nemo, T. E., 1983, Aliphatic hydroxylation catalyzed by iron porphyrin complexes, J. Am. Chem. Soc. 105: 6243–6248.Google Scholar
  39. 30.
    Poulos, T., 1984, The crystal structure of cytochrome P-450cAM, SE Regional ACS Meeting, Raleigh, N.C., Oct. 1984.Google Scholar
  40. 31.
    Nee, M. W., and Bruice, T. C., 1982, Use of the N-oxide of p-cyano-N,N-dimethylaniline as an “oxygen” donor in a cytochrome P-450 model system, J. Am. Chem. Soc. 104: 6123–6125.Google Scholar
  41. Shannon. P., and Bruice, T. C., 1981, A novel P-450 model system for the N-dealkylation reaction, J. Am. Chem. Soc. 103: 4580–4582.Google Scholar
  42. 32.
    Heimbrook, D. C., Murray, R. I., Egeberg, K. D., Sligar, S. G., Nee, M. W., and Bruice, T. C., 1984, Demethylation of N,N-dimethylaniline and p-cyano-N,N-dimethylaniline and their N-oxides by cytochromes P-450LM2 and P-450cAM, J. Am. Chem. Soc. 106: 1514–1515.Google Scholar
  43. 33.
    Miwa, G. T., Walsh, J. S., Kedderis, G. L., and Hollenberg, P. F., 1983, The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalyzed N-demethylation reactions, J. Biol. Chem. 258: 14445–14449.PubMedGoogle Scholar
  44. 34.
    Sakurai, H., Hatayama, E., and Nishida, M., 1983, Aromatic hydroxylation of acetanilide and aniline by hemin—thiolate complex as a cytochrome P-450 model, Inorg. Chim. Acta 80: 7–12.Google Scholar
  45. Sakurai, H., and Ogawa, S., 1979, A model system of cytochrome P-450: Hydroxylation of aniline by iron— or hemin—thiol compound systems, Chem. Pharm. Bull. 1979: 2171–2176.Google Scholar
  46. 35.
    Sakurai, H., Hatayama, E., Fujitani, K., and Kata, H., 1982, Occurrence of aromatic methyl migration (NIH—shift) during oxidation of p-methylanisole by hemin—thiolester complex as a cytochrome P-450 model, Biochem. Biophys. Res. Commun. 35: 1649–1654.Google Scholar
  47. 36.
    Sakurai, H., Ishizu, K., and Okada, K., 1984, Superoxide generation by an irontetraphenylporphyrin-thiolate-oxygen system and its significance in relation to the coordination site of cytochrome P-450, Inorg. Chim. Acta 91: L9 - L11.Google Scholar
  48. Sakurai, H., and lshizu, K., 1982, Generation of superoxide in a cobalt(II) tetraphenylporphyrinthiolate-oxygen system, J. Am. Chem. Soc. 104: 4960–4962.Google Scholar
  49. 37.
    Traylor, P. S., Dolphin, D., and Traylor, T. G., 1984, Sterically protected hemins with electronegative substituents: Efficient catalysts for hydroxylation and epoxidation, J. Chem. Soc. Chem. Commun. 1984: 279–280.Google Scholar
  50. 38.
    Reed, C. A., 1982, Iron(I) and Iron(1V) porphyrins, Adv. Cheni. Ser. 201: 333–356.Google Scholar
  51. 39.
    Felton, R. H., Owen, G. S., Dolphin, D., and Fajer, J., 1971, Iron(IV) porphyrins, J. Am. Chem. Soc. 93: 6332–6334.PubMedGoogle Scholar
  52. Felton, R. H., Owen, G. S., Dolphin, D., Forman, A., Borg, D. C., and Fajer, J., 1973, Oxidation of ferric porphyrins, Ann. N.Y. Acad. Sci. 206: 504–514.PubMedGoogle Scholar
  53. 40.
    Phillippi, M. A., and Goff, H. M., 1982, Electrochemical synthesis and characterization of the single-electron oxidation products of ferric porphyrins, J. Am. Chem. Soc. 104: 6026–6034.Google Scholar
  54. 41.
    Gans, P., Marchon, J.-C., Reed, C. A., and Regnard, J. R., 1981, One-electron oxidation of chloroiron(III) tetraphenylporphyrin: Evidence for porphyrin cation radical in the oxidized product, Nouv. J. Chim. 5: 203–204.Google Scholar
  55. 42.
    Phillippi, M. A., Shimomura, E. T., and Goff, H. M., 1981, Investigation of axial anionic ligand and porphyrin substituent effects on the oxidation of iron(III) porphyrins: Porphyrin-centered vs. metal-centered oxidation, Inorg. Chem. 20: 1322–1325.Google Scholar
  56. Goff. H. M., and Goff, H. M., and Phillippi, M. A., 1983, Imidazole complexes of low-spin iron(III) porphyrin Tr-cation radical species: Models for the compound I Tr-cation radical state of peroxidases, J. Am. Chem. Soc. 105: 7567–7571.Google Scholar
  57. 43.
    Groves, J. T., Quinn, R., McMurry, T. J., Lang, G., and Boso, B., 1984, Iron(IV) porphyrins from iron(111) porphyrin cation radicals, J. Chem. Soc. Chem. Commun. 1984: 1455–1456.Google Scholar
  58. 44.
    Schlotz, W. F., Reed, C. A., Lee, Y. J., Scheidt, W. R., and Lang, G., 1982, Magnetic interactions in metalloporphyrin Tr-radical cations of copper and iron, J. Am. Chem. Soc. 104: 6791–6793.Google Scholar
  59. 45.
    Buisson, G., Deronzier, A., Duee, E., Gans, P., Marchon, J.-C., and Regnard, J.-R., 1982, Iron(III)-porphyrin Tr-cation radical complexes: Molecular structures and magnetic properties, J. Am. Chem. Soc. 104: 6793–6796.Google Scholar
  60. 46.
    Hanson, L. K., Chang, C. K., Davis, M. S., and Fajer, J., 1981, Electron pathways in catalyase and peroxidase enzymic catalysis: Metal and macrocycle oxidations of iron porphyrins and chlorins, J. Am. Chem. Soc. 103: 663–670.Google Scholar
  61. Loew, G. H., Kert, C. J., Hjelmeland, L. M., and Kirchner, R. F., 1977, Active site models of horseradish peroxidase compound I and a cytochrome P-450 analogue: Electronic structure and electric field gradients.Google Scholar
  62. Loew, G. H., and Herman, Z. S., 1980, Calculated spin densities and quadrupole splitting for model horseradish peroxidase compound I: Evidence for iron(IV) porphyrin (S = 1) Tr-cation radical electronic structure, J. Am. Chem. Soc. 102: 6173–6174.Google Scholar
  63. 47.
    Chin, D. H., Balch, A. L., and LaMar, G. N., 1980, Formation of porphyrin ferryl (FeO’) complexes through the addition of nitrogen bases to peroxo-bridged iron(III) porphyrins, J. Am. Chem. Soc. 102: 1446–1448.Google Scholar
  64. Chin, D. H., LaMar, G. N., and Balch, A. L., 1980, On the mechanism of autoxidation of iron(II) porphyrins: Detection of a peroxo-bridged iron(III) porphyrin dimer and the mechanism of its thermal decomposition to the oxobridged iron(III) porphyrin dimer, J. Am. Chem. Soc. 102: 4344–4350.Google Scholar
  65. 48.
    Simonneaux, W. F., Schlotz, W. F., and Reed, C. A., 1982, Mössbauer spectra of unstable iron porphyrins: Models for compound I of peroxidase, Biochim. Biophys. Acta 716: 1–7.Google Scholar
  66. 49.
    Arena, F., Gans, P., and Marchon, J.-C., 1984, Dual electron-transfer reactivity of a high-spin iron(III) porphyrin cation radical complex, J. Chem. Soc. Chem. Commun. 1984: 196–197.Google Scholar
  67. 50.
    Bajdor, K., and Nakamoto, K., 1984, Formation of ferryltetraphenylporphyrin by laser irradiation, J. Am. Chem. Soc. 106: 3045–3046.Google Scholar
  68. 51.
    Burke, J. M., Kincaid, J. R., and Spiro, T. G., 1978, Resonance Raman spectra and vibrational modes of iron(III) tetraphenylporphine µ-oxo dimer: Evidence for phenyl interaction and lack of dimer splitting, J. Am. Chem. Soc. 100: 6077–6083.Google Scholar
  69. 52.
    Boso, B., Lang, G., McMurry, T. J., and Groves, J. T., 1983, Mössbauer effect study of tight spin coupling in oxidized chloro-5,10,15,20-tetra(mesityl)porphyrinato-iron(III), J. Chem. Phys. 79: 1122–1126.Google Scholar
  70. 53.
    Traylor, T. G., Lee, W. A., and Stynes, D. V., 1984, Model compound studies related to peroxidases: Mechanisms of reactions of hemins with peracids, J. Am. Chem. Soc. 106: 755–764.Google Scholar
  71. 54.
    Traylor, T. G., Lee, W. A., and Stynes, D. V., 1984, Model compound studies related to peroxidases. II. The chemical reactivity of a high valent protohemin compound, Tetrahedron 40: 553–568.Google Scholar
  72. 55.
    McCarthy, M.-B., and White, R. E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate, J. Biol. Chem. 258: 9153–9158.PubMedGoogle Scholar
  73. 56.
    Khenkin, A. M., and Shteinman, A. A., 1982, Izv. Akad. Nauk SSSR Ser. Khim. 7: 1668.Google Scholar
  74. Khenkin, A. M., and Shteinman, A. A., 1984, The mechanism of oxidation of alkanes by peroxo complexes of iron porphyrins in the presence of acylating agents: A model for activation of 02 by cytochrome P-450, J. Chem. Soc. Chem. Commun. 1984: 1219–1220.Google Scholar
  75. 57.
    Groves, J. T., Watanabe, Y., and McMurry, T. J., 1983, Oxygen activation by metalloporphyrins: Formation and decomposition of an acylperoxymanganese(III) complex, J. Am. Chem. Soc. 105: 4489–4490.Google Scholar
  76. 58.
    Shirazi, A., and Goff, H. M., 1982, Characterization of superoxide—metalloporphyrin reaction products: Effective use of deuterium NMR spectroscopy, J. Am. Chem. Soc. 104: 6318–6322.Google Scholar
  77. 59.
    Hoffman, B. M., Szymanski, T., Brown, T. G., and Basolo, F., 1978, The dioxygen adducts of several manganese(Il) porphyrins: Electron paramagnetic resonance studies, J. Am. Chem. Soc. 100: 7253–7254.Google Scholar
  78. Jones, R. D., Summerville, D. A., and Basolo, F., 1978, Manganese(II) porphyrin oxygen carriers: Equilibrium constants for the reaction of dioxygen with para-substituted meso-tetraphenylporphinatomanganese(II) complexes, J. Am. Chem. Soc. 100: 4416–4424.Google Scholar
  79. Hanson, L. K., and Hoffman, B. M., 1980, Griffith model bonding in dioxygen complexes of manganese porphyrins, J. Am. Chem. Soc. 102: 4602–4609.Google Scholar
  80. 60.
    Groves, J. T., Kruper, W. J., Jr., and Haushalter, R. C., 1980, Hydrocarbon oxidations with oxometalloporphinates: Isolation and reactions of a (porphinato)manganese(V) complex, J. Am. Chem. Soc. 102: 6375–6377.Google Scholar
  81. 61.
    Hill, C. L., and Schardt, B. C., 1983, Alkane activation and functionalization under mild conditions by a homogeneous manganese(III) porphyrin—iodosylbenzene oxidizing system, J. Am. Chem. Soc. 102: 6374–6375.Google Scholar
  82. 62.
    Smegal, J. A., Schardt, B. C., and Hill, C. L., 1983, Isolation, purification and characterization of intermediate (iodosylbenzene)metalloporphyrin complexes from the (tetraphenylporphinato)manganese(II I)—iodosylbenzene catalytic hydrocarbon functionalization system, J. Am. Chem. Soc. 105: 3510–3515.Google Scholar
  83. Smegal, J. A., and Hill, C. L., 1983, Synthesis, characterization and reaction chemistry of a bis(iodosylbenzene)metalloporphyrin complex, [PhI(OAc)O]2Mn’“TPP: A complex possessing a five-electron oxidation capability, J. Am. Chem. Soc. 105: 2920–2922.Google Scholar
  84. 63.
    Camenzind, M. J., Hollander, F. J., and Hill, C. L., 1982, Synthesis, ground electronic state, and crystal and molecular structure of the monomeric manganese(IV) porphyrin complex dimethoxy(5,10,15,20-tetraphenylporphinato)manganese(IV), Inorg. Chem. 21: 4301–4308.Google Scholar
  85. Camenzind, M. J., Hollander, F. J., and Hill, C. L., 1983, Synthesis, characterization and ground electronic state of the unstable monomeric manganese(IV) porphyrin complexes diazo-and bis(isocyanato) (5,10,15,20-tetraphenylporphinato)manganese(IV): Crystal and molecular structure of the bis(isocyanato) complex, Inorg. Chem. 22: 3776–3785.Google Scholar
  86. 64.
    Carnieri, N., Harriman, A., and Porter, G., 1982, Photochemistry of manganese porphyrins. Part 6. Oxidation—reduction equilibria of manganese(III) porphyrins in aqueous solution, J. Chem. Soc. Dalton Trans. 1982: 931–938.Google Scholar
  87. Carnieri, N., Harriman, A., Porter, G., and Kalyanasundraram, K., 1982, Photochemistry of manganese porphyrins. Part 7. Characterization of manganese porphyrins in organic and aqueous/ organic microheterogeneous systems, J. Chem. Soc. Dalton Trans. 1982: 1231–1238.Google Scholar
  88. 65.
    Kruper, W. J., Jr., 1982, The isolation, characterization and reactivity of high valent oxometalloporphyrinates of chromium and manganese, Parts 1 and 2, Ph.D. Thesis, The University of Michigan.Google Scholar
  89. 66.
    Smegal, J. A., and Hill, C. L., 1983, Hydrocarbon functionalization by the (iodosylbenzene)manganese(IV)porphyrin complexes from the (tetraphenylporphinato)manganese(III)—iodosylbenzene catalytic hydrocarbon oxidation system: Mechanism and reaction chemistry, J. Am. Chem. Soc. 105: 3515–3521.Google Scholar
  90. 67.
    Hill, C. L., Smegal, J. A., and Henly, T. J., 1983, Catalytic replacement of unactivated alkane carbon—hydrogen bonds with carbon—X bonds (X = nitrogen, oxygen, chlorine, bromine, or iodine): Coupling of intermolecular hydrocarbon activation by Mn“’TPPX complexes with phasetransfer catalysis, J. Org. Chem. 48: 3277–3281.Google Scholar
  91. Hill, C. L., and Smegal, J. A., 1982, Catalytic replacement of unactivated alkane carbon—hydrogen bonds with carbon—nitrogen bonds, Nouv. J. Chim. 6: 287–289.Google Scholar
  92. 68.
    Epoxidation of Olefins by Alkali Metal Hypochlorites, Fr. Demande FR 2,518,545, Guilmet, E., and Meunier, B., June 24, 1983.Google Scholar
  93. 69.
    Collman, J. P., Kodadek, T., Raybuck, S. A., and Meunier, B., 1983, Oxygenation of hydrocarbons by cytochrome P-450 model compounds: Modification of reactivity by axial ligands, Proc. Natl. Acad. Sci. USA 80: 7039–7041.PubMedGoogle Scholar
  94. Caravalho, M.-E., and Meunier, B., 1983, Stereochemical arguments against a possible chlorohydrin route in the catalytic epoxidation of olefins with NaOCI/Mn-porphyrins, Tetrahedron Lett. 24: 3621–3624.Google Scholar
  95. Guilmet, E., and Meunier, B., 1982, Unexpected modification of selectivity with pyridine in the NaOC1/Mn(TPP)OAc catalytic epoxidation, Nouv. J. Chim. 6: 511–513.Google Scholar
  96. Guilmet, E., and Meunier, B., 1982, Role of pyridine in the catalytic activation of sodium hypochlorite in the presence of manganese porphyrin, Tetrahedron Lett. 23: 2449–2452.Google Scholar
  97. Guilmet, E., and Meunier, B., 1980, A new catalytic route for the epoxidation of styrene with sodium hypochlorite activated by transition metal complexes, Tetrahedron Lett. 21: 4449–4450.Google Scholar
  98. Tabushi, I., and Koga, N., 1979, Synergetic combination of catalysis of the phase transfer—electron transfer type for the oxidation of alcohols or hydrocarbons, Tetrahedron Lett. 20: 3681–3684.Google Scholar
  99. 70.
    van der Made, A., Smeets, J. W. H., Nolte, R. J. M., and Drenth, W., 1983, Olefin epoxidation by a mono-oxygenase model: Effect of site isolation, J. Chem. Soc. Chem. Commun. 1983: 1204–1206.Google Scholar
  100. 71.
    Bortolini, O., and Meunier, B., 1983, Isolation of a high-valent “oxo-like” manganese porphyrin complex obtained from NaOC1 oxidation, J. Chem. Soc. Chem. Commun. 1983: 1364–1366.Google Scholar
  101. 72.
    Rosenberg, J. A. S., Nolte, R. J. M., and Drenth, W., 1984, Mechanism of olefin epoxidation by a mono-oxygenase model, Tetrahedron Lett. 25: 789–792.Google Scholar
  102. 73.
    Collman, J. P., Brauman, J. I., Meunier, B., Raybuck, S. A., and Kodadek, T., 1984, Epoxidation of olefins by cytochrome P-450 model compounds: Mechanism of oxygen atom transfer, Proc. Natl. Acad. Sci. USA 81: 3245–3248.PubMedGoogle Scholar
  103. 74.
    Sharpless, K. B., Teranishi, A. Y., and Bäckvall, J.-E., 1977, Chromyl chloride oxidations of olefins: Possible role of organometallic intermediates in the oxidations of olefins by oxo transition metal species, J. Am. Chem. Soc. 99: 3120–3128.Google Scholar
  104. 75.
    Schlodder, R., Ibers, J. A., Lenarda, M., and Graziani, M., 1974, Structure and mechanism of formation of the metallooxacyclobutane complex Pt[C2(CN)4O)][As(C6H5)3]2, the product of the reaction between tetracyanooxirane and Pt[As(C6H5)3]4, J. Am. Chem. Soc. 96: 6893–6900.Google Scholar
  105. Lenarda, M., Ros, R., Traverso, O., Pitts, W. D., Baddley, W. H., and Graziani, M., 1977, Reactions of tetracyanoethylene oxide with some noble metal complexes, Inorg. Chem. 16: 3178–3182.Google Scholar
  106. 76.
    Milstein, D., and Calabrese, J. C., 1982, Oxidative addition of unactivated epoxides to iridium(I) complexes: Formation of stable cis-hydridoformylemethyl and -acylmethyl complexes, J. Am. Chem. Soc. 104: 3773–3774.Google Scholar
  107. 77.
    Rappé, A. K., and Goddard, W. A., III, 1982, Hydrocarbon oxidation by high-valent group 6 oxides, J. Am. Chem. Soc. 104: 3287–3294.Google Scholar
  108. 78.
    Walba, D. M., DePuy, C. H., Grabowski, J. J., and Bierbaum, V. M., 1984, Oxidation of alkenes by d° transition-metal oxo species: A mechanism for the oxidation of ethylene by a dioxochromium(VI) complex in the gas phase, Organometallics 3: 498–499.Google Scholar
  109. 79.
    Mansuy, D., Fontecave, M., and Bartoli, J.-F., 1983, Monooxygenase-like dioxygen activation leading to alkane hydroxylation and olefin epoxidation by an Mn“ (porphyrin)—ascorbate biphasic system, J. Chem. Soc. Chem. Commun. 1983: 253–254.Google Scholar
  110. 80.
    Tabushi, I., and Koga, N., 1979, P-450 type oxygen activation by porphyrin—man-ganese complex, J. Am. Chem. Soc. 101: 6456–6458.Google Scholar
  111. Tabushi, I., and Yazaki, A., 1981, P-450-type dioxygen activation using H2/colloidal Pt as an effective electron donor, J. Am. Chem. Soc. 103: 7371–7373.Google Scholar
  112. Tabushi, I., and Nishiya, T., 1983, Colloidal platinum as an efficient and selective catalyst for reduction of metalloenzymes and metallocoenzymes, Tetrahedron Lett. 24: 5005–5008.Google Scholar
  113. Tabushi, I., and Morimitsu, K., 1984, Stereospecific, regioselective and catalytic monoepoxidation of polyolefins by the use of a P-450 model, H2–02-TPP•Mn-colloidal platinum, J. Am. Chem. Soc. 106: 6871–6872.Google Scholar
  114. 81.
    Okamoto, T., and Oka, S., 1984, Oxygenation of olefins under reductive conditions: Cobalt-catalyzed selective conversion of aromatic olefins to benzylic alcohols by molecular oxygen and tetrahydroborate, J. Org. Chem. 49: 1589–1594.Google Scholar
  115. 82.
    Bied-Charreton, C., and Gaudemer, A., 1976, Carbonyl compounds as primary products in the reduction of alkyldioxycobaloximes by sodium borohydride, J. Am. Chem. Soc. 98: 3997–3998.Google Scholar
  116. 83.
    Ledon, H. J., Durbut, P., and Varescon, F., 1981, Selective epoxidation of olefins by molybdenum porphyrin catalyzed peroxy-bound heterolysis, J. Am. Chem. Soc. 103: 3601–3603.Google Scholar
  117. 84.
    Mansuy, D., Bartoli, J.-F., and Momenteau, M., 1982, Alkane hydroxylation catalyzed by metalloporphyrins: Evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants, Tetrahedron Lett. 23: 2781–2784.Google Scholar
  118. 85.
    Ledon, H. J., Durbut, P., and Varescon, F., 1982, Proceedings of the Climax Fourth International Conference on the Chemistry and Uses of Molybdenum (H. F. Barry and P. C. H. Mitchell, eds.), Climax Molybdenum Co., Ann Arbor, Mich., pp. 319–322.Google Scholar
  119. 86.
    Chong, A., and Sharpless, K. B., 1977, On the mechanism of the molybdenum and vanadium catalyzed epoxidation of olefins by alkyl hydroperoxides, J. Org. Chem. 42: 1587–1590.Google Scholar
  120. 87.
    Sheldon, R. A., 1980, Synthetic and mechanistic aspects of metal-catalyzed epoxidations with hydroperoxides, J. Mol. Catal. 7: 107–126.Google Scholar
  121. 88.
    Ledon, H., Varescon, F., Malinski, T., and Kadish, K. M., 1984, Reduction of cisdioxo(tetraphenylporphinate) molybdenum(VI): One-or two-electron-transfer pathway, Inorg. Chem. 23: 261–263.Google Scholar
  122. 89.
    Malinski, T., Ledon, H., and Kadish, K. M., 1983, Electrochemical activation of a metal oxo bond: Oxidation of cis-dioxomolybdenum(VI)tetraphenyiporphyrin, J. Chem. Soc. Chem. Commun. 1983: 1077–1079.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Thomas J. McMurry
    • 1
  • John T. Groves
    • 1
  1. 1.Department of ChemistryThe University of MichiganAnn ArborUSA

Personalised recommendations