Behavioral, Electrophysiological, and Biochemical Consequences of Chronic Cytochrome Oxidase Inhibition in Rats

  • M. C. Bennett
  • G. M. Rose


The mitochondrial enzyme cytochrome oxidase (C.O.) is an essential catalyst for electron transfer in oxidative phosphorylation. Recent clinical studies have shown that C.O. activity is reduced in both blood platelets and in the brains of patients with Alzheimer’s disease (A.D.), suggesting that a decline in the efficiency of this enzyme could impair cognition. We explored this idea by chronically treating rats with sodium azide, using doses that inhibited C.O. but not other electron transport chain enzymes. Our initial studies demonstrated that selective C.O. inhibition produced deficits in learning tasks, including spatial learning, but did not alter basic sensorimotor function. Azide treatment also disrupted hippocampal long-term potentiation, a potential memory encoding mechanism. Both these effects may have been the consequence of a reduction in membrane bound protein kinase C activity that was observed in the hippocampus, but not in frontal or temporal cortex or cerebellum. Further work revealed that the stress hormone, corticosterone, potentiated azide-induced inhibition of C.O. and the resulting cognitive deficits. Thus, manipulation of C.O. activity in rats to mimic biochemical conditions observed in patients with A.D. caused impairments in learning and memory.


Sodium Azide Cytochrome Oxidase Spatial Learning Morris Water Maze Visible Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angenstein, F., & Staak, S. (1997). Receptor-mediated activation of protein kinase C in hippocampal long-term potentiation: facts, problems and implications [see comments]. Progress in Neuropsychopharmacologv and Biological Psychiatry, 21(3), 427–54.CrossRefGoogle Scholar
  2. Bannerman, D. M., Good, M. A., Butcher, S. P.. Ramsay, M., & Morris, R. G. M. (1995). Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature, 378, 182–186.PubMedCrossRefGoogle Scholar
  3. Barnes, C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology, 93(1), 74–104.PubMedCrossRefGoogle Scholar
  4. Battaini, F.. Elkabes, S., Bergamaschi, S., Ladisa, V., Lucchi, L., Graa, D., PN, Schuurman, T., Wetsel, W. C., Trabucchi, M., & Govoni, S. (1995). Protein kinase C activity, translocation, and conventional isoforms in aging rat brain. Neurobiology of Aging, 16 (2), 137–148.PubMedCrossRefGoogle Scholar
  5. Beal, M. F. (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Annals of Neurology, 38 (3), 357–66.PubMedCrossRefGoogle Scholar
  6. Becker, J. T., Walker, J. A., & Olton, D. S. (1980). Neuroanatomical bases of spatial memory. Brain Research, 200, 307–320.PubMedCrossRefGoogle Scholar
  7. Bennett. M. C. (1995). Patterns of damage in rat brain produced by chronic sodium azide and corticosterone treatments. Neuroscience Abstracts, 751.Google Scholar
  8. Bennett, M. C., Diamond, D. M., Stryker, S. L., Parks, J. K., & Parker Jr., W. D. (1992a). Cytochrome oxidase inhibition: A novel animal model of Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 5(2), 93–101.Google Scholar
  9. Bennett, M. C., Diamond, D. M., Stryker, S. L., Parks, J. K., & Parker, W. D., Jr. (1992b). Cytochrome oxidase inhibition: a novel animal model of Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 5 (2), 93–101.PubMedGoogle Scholar
  10. Bennett, M. C., Fordyce, D. E., Rose, G. M., & Wehner, J. M. (1995). Chronic sodium azide treatment decreases membrane-bound protein kinase C activity in the rat hippocampus. Neurobiology of Learning and Memory, 64, 187–190.CrossRefGoogle Scholar
  11. Bennett, M. C., Mlady, G. W., Fleshner, M., & Rose, G. M. (1996a). Synergy between chronic corticosterone and sodium azide treatments in producing a spatial learning deficit and inhibiting cytochrome oxidase activity. Proceedings of the National Academy of Sciences of the United States of America, 93(3), 1330–4.CrossRefGoogle Scholar
  12. Bennett, M. C., Mlady, G. W., Kwon, Y. H., & Rose, G. M. (1996b). Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase. Journal of Neurochemistry, 66 (6), 2606–11.PubMedCrossRefGoogle Scholar
  13. Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31–39.PubMedCrossRefGoogle Scholar
  14. Bowling, A. C., & Beal, M. F. (1995). Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sciences, 56(14), 1151–71.PubMedCrossRefGoogle Scholar
  15. Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., & Beal, M. F. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 7105–9.PubMedCrossRefGoogle Scholar
  16. Brouillet, E., Hyman, B. T., Jenkins, B. G., Henshaw, D. R., Schulz, J. B., Sodhi, P., Rosen, B. R., and Beal, M. F. (1994). Systemic or local administration of azide produces striatal lesions by an energy impairment-induced excitotoxic mechanism. Experimental Neurology, 129(2),175–82.CrossRefGoogle Scholar
  17. Cada, A., Gonzalez-Lima, F., Rose, G. M., & Bennett, M. C. (1995). Regional brain effects of sodium azide treatment on cytochrome oxidase activity: a quantitative histochemical study. Metabolic Brain Disease, 10(4), 303–20.PubMedCrossRefGoogle Scholar
  18. Casabona, G. (1997). Intracellular signal modulation: a pivotal role for protein kinase C. Pis gres.s in Neurops.rchopharmacology and Biological Psychiatry 21(3), 407–25.CrossRefGoogle Scholar
  19. Chagnon, P., Betard, C., Robitaille, Y., Cholette, A., & Gauvreau, D. (1995). Distribution of brain cytochrome oxidase activity in various neurodegenerative diseases. Neuroreport, 6(5), 711–5.Google Scholar
  20. Chandrasekaran, K., Giordano, T., Brady, D. R., Stoll, J., Martin, L. J., & Rapoport, S. I. (1994). Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Research. Molecular Brain Research, 24(1–4), 336–40.CrossRefGoogle Scholar
  21. Chen, S. J., Sweatt, J. D., & Klann, E. (1997). Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain Research, 749(2), 181–7.PubMedCrossRefGoogle Scholar
  22. Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L..1., Beal, M. F., Howell, N., & Parker, W. D., Jr. (1997). Mutations in mitochondrial cytochrome e oxidase genes segregate with late-onset Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 94 (9), 4526–31.PubMedCrossRefGoogle Scholar
  23. Diamond, D. M., Dunwiddie, T. V., & Rose, G. M. (1988). Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat. Journal of Neuroscience, 8(11), 4079–4088.Google Scholar
  24. Fordyce, D. E., and Wehner, J. M. (1993). Effects of aging on spatial learning and hippocampal protein kinase C in mice. Neurobiology of Aging, 14, 309–317.PubMedCrossRefGoogle Scholar
  25. Fujimoto, K., Yoshida, M., Ikeguchi, K., & Niijima, K. (1989). Impairment of active avoidance produced after destruction of pedunculopontine nucleus areas in the rat. Neuroscience Research, 6, 321–328.PubMedCrossRefGoogle Scholar
  26. Gonzalez-Lima, F., Valla, J., & Matos-Collazo, S. (1997). Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer’s patients. Brain Research, 752(1–2), 117–26.Google Scholar
  27. Greenstein, Y. J., Pavlides, C., & Winson, J. (1988). Long-term potentiation in the dentate gyms is preferentially induced at a theta rhythm periodicity. Brain Research, 438, 331–334.PubMedCrossRefGoogle Scholar
  28. Harvey, P. W., Healing, G., Rees, S. J., Everett, D. J., and Cockburn, A. (1994). Glucocorticosteroid interactions with natural toxins: a mini review. Natural Toxins, 2(6),341–6.PubMedGoogle Scholar
  29. Hatanpaa, K., Brady, D. R., Stoll, J., Rapoport, S. I., & Chandrasekaran, K. (1996). Neuronal activity and early neurofibrillary tangles in Alzheimer’s disease. Annals of Neurology; 40(3). 41 1–20.Google Scholar
  30. Hewitt, E. J., & Hallas, D. G. (1959). Measurement of inhibition by aside in a biochemical assay system involving nitrite estimation by diazotization. Nature, 184, 1485–1487.PubMedCrossRefGoogle Scholar
  31. Hicks, S. P. (1950). Brain metabolism in vivo. H. The distribution of lesions caused by aside, malononitrile, plasmocid and dinitrophenol poisoning in rats. Archives of Pathology, 49, 545–563.Google Scholar
  32. Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12, 118–134.PubMedCrossRefGoogle Scholar
  33. Keilin, D., & Hartree, E. F. (1954). Reactions of methaglobin and catalase with peroxidases and hydrogen donors. Nature, 173, 720–723.PubMedCrossRefGoogle Scholar
  34. Keilin, D., Hartree, E. F., Cecil, R., & Ogston, A. G. (1951). Purification of horseradish peroxidase and comparison of its properties with those of catalase and methaglobin. Biochemical Journal, 49, 88–106.PubMedGoogle Scholar
  35. Kish, S. J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L. J., Wilson, J. M., DiStefano, L. M., & Nobrega, J. N. (1992). Brain cytochrome oxidase in Alzheimer’s disease. Journal of Neurochemistry, 59, 776–779.PubMedCrossRefGoogle Scholar
  36. Klein-Schwartz, W., Gorman, R. L., Oderda, G. M., Massaro, B. R, Kurt, T. L., & Garriott, J. C. (1989). Three fatal sodium azide poisonings. Medical Toxicology: Adverse Drug Experiences, 4(3), 219–227.Google Scholar
  37. Koreshtz, W. J., Jenkins, B. G., Rosen, B. R., & Beal, M. F. (1997). Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Annals of Neurology, 41, 160–165.CrossRefGoogle Scholar
  38. Lai, J. C. K., and Clark, J. B. (1979). Preparation of synaptic and non-synaptic mitochondria from mammalian brain. Methods in Enzymology, 55, 51–60.PubMedCrossRefGoogle Scholar
  39. Laroche, S., Doyere, V., & Bloch, V. (1989). Linear relation between the magnitude of long-term potentiation in the dentate gyrus and associative learning in the rat. A demonstration using commissural inhibition and local infusion of an N-methyl-D-aspartate receptor antagonist. Neuroscience, 28, 375–386.PubMedCrossRefGoogle Scholar
  40. Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.PubMedCrossRefGoogle Scholar
  41. Leblhuber, F., Peichl, M., Neubauer, C., Reisecker, F., Steinparz, F. X., Windhager, E., & Maschek, W. (1995). Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. Journal of Neurological Sciences. 132, 75–79.CrossRefGoogle Scholar
  42. Malenka, R. C. (1994). Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78(4), 535–538.Google Scholar
  43. Malmstrom, B. G., Andreasson, L. E., & Reinhammar, B. (1975). Copper-containing oxidases and superoxide dismutase. In P. D. Boyer (Ed.), The Enzymes (Vol. XII, pp. 507–579 ). New York: Academic Press.Google Scholar
  44. Maren, S., & Baudry, M. (1995). Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiology of Learning and Memory, 63(1), 1–18.Google Scholar
  45. Mastrogiacoma, F., Lindsay, J. G., Bettendorff, L., Rice, J., & Kish, S. J. (1996). Brain protein and alpha-ketoglu-tarate dehydrogenase complex activity in Alzheimer’s disease. Annals of Neurology, 39 (5), 592–8.PubMedCrossRefGoogle Scholar
  46. McNaughton, B. L. (1982). Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. Journal of Physiology, 324, 240–262.Google Scholar
  47. Moore, C. I.. Browning, M. D., & Rose, G. M. (1993). Hippocampal plasticity induced by primed burst, but not LTP, stimulation is impaired in area CAI of aged Fischer 344 rats. Hippocampus, 3, 57–666.PubMedGoogle Scholar
  48. Moser, M.-B., Moser, E. I., Forrest, E., Andersen, P., & Morris, R. G. M. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proceedings of the National Academy of Sciences of the United States ofAmerica. 92. 9697–9701.CrossRefGoogle Scholar
  49. Mutisya, E. M., Bowling, A. C., & Beal, M. F. (1994). Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. Journal of Neurochemistry. 63 (6), 2179–84.PubMedCrossRefGoogle Scholar
  50. Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB Journal, 6, 3051–3064.PubMedGoogle Scholar
  51. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 334, 661–665.PubMedCrossRefGoogle Scholar
  52. Otton, D. S., Walker, J. A., & Gage. F. H. (1978). Hippocampal connections and spatial discrimination. Brain Research, /39,295–308.Google Scholar
  53. Parker. W. D., Jr., Filley, C. M., & Parks, J. K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology, 40(8), 1302–3.Google Scholar
  54. Parker, W. D., Jr., Mahr, N. J., Filley, C. M., Parks, J. K., Hughes, D., Young, D. A., & Cullum, C. M. (1994a). Reduced platelet cytochrome e oxidase activity in Alzheimer’s disease [see comments]. Neurology, 44(6), 108(-1090.Google Scholar
  55. Parker, W. D., Jr., Parks, J., Filley, C. M., & Kleinschmidt-DeMasters, B. K. (1994b). Electron transport chain defects in Alzheimer’s disease brain [see comments]. Neurology, 44(6), 1090–1096.Google Scholar
  56. Rapp, P. R., & Gallagher, M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences of the United States of America, 93 (18), 992–030.CrossRefGoogle Scholar
  57. Rasmussen, T., Schliemann, T., Sorensen, J. C., Zimmer, J., & West, M. J. (1996). Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiology of Aging, 17(1), 143–7.PubMedCrossRefGoogle Scholar
  58. Reichmann, H., Florke, S., Hebenstreit, G., Schrubar, H., & Riederer, P. (1993). Analyses of energy metabolism and mitochondrial genome in post-mortem brain from patients with Alzheimer’s disease. Journal of Neurology. 240(6), 377–80.PubMedCrossRefGoogle Scholar
  59. Robinson Jr., G. S., Crooks Jr., G. B., Shinkman, P. G., & Gallagher, M. (1989). Behavioral effects of MK-801 mimic deficits associated with hippocampal damage. Psychobiology, 17(2), 156–164.Google Scholar
  60. Rose, G. M., & Dunwiddie, T. V. (1986). Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neuroscience Letters, 69, 244–248.PubMedCrossRefGoogle Scholar
  61. Rose, G. M., Fordyce, D. E., & Weimer, J. M. (1996a). Hippocampal protein kinase C activtion correlates with spatial learning in aged male Fischer 344 rats. International Behavioral Neuroscience Society Abstracts(5), 53.Google Scholar
  62. Rose, G. M., Heman, K. L., & Williams, L. R. (1996b). Chronic nerve growth factor administration enhances hippocampal primed burst potentiation in aged, but not young male Fischer 344 rats. Neuroscience Abstracts, 22, 752.Google Scholar
  63. Rotilio, G., Bray, R. C., & Fielden, E. M. (1972). A pulse radiolysis study of superoxide dismutase. Biochimica Biophysica Acta, 268, 605–609.CrossRefGoogle Scholar
  64. Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels. Journal of Neuroscience, 6, 2240–2244.PubMedGoogle Scholar
  65. Schapira, A. H. (1996). Oxidative stress and mitochondrial dysfunction in neurodegeneration. Current Opinion in Neurology, 9 (4), 260–4.PubMedCrossRefGoogle Scholar
  66. Siesjo, B. K., & Zwetnow, N. N. (1970). The effect of hypovolemic hypotension on extra-and intracellular acid- base parameters and energy metabolites in the rat brain. Acta Phvsiologica Scandinavica, 79, 114–124.CrossRefGoogle Scholar
  67. Simonian, N. A., & Hyman, B. T. (1993). Functional alterations in Alzheimer’s disease: diminution of cytochrome oxidase in the hippocampal formation. Journal of Neuropathology and Experimental Neurology, 52(6), 580–5.Google Scholar
  68. Simonian, N. A., & Hyman, B. T. (1994). Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. Journal of Neuropathology and Experimental Neurology, 53 (5), 508–12.PubMedCrossRefGoogle Scholar
  69. Simonian, N. A., & Hyman, B. T. (1995). Functional alterations in neural circuits in Alzheimer’s disease. Neurobiology of Aging, 16 (3), 305–9.PubMedCrossRefGoogle Scholar
  70. Smith, R. R, Louis, C. A., Kruszyna, R., & Kruszyna, H. (1991). Acute neurotoxicity of sodium azide and nitric oxide. Fundamental and Applied Toxicology, 17(1), 120–7.PubMedCrossRefGoogle Scholar
  71. Van der Zee, E. A., & Douma, B. R. (1997). Historical review of research on protein kinase C in learning and memory [see comments]. Progress in Neuropsychopharmacology and Biological Psychiatry, 21(3), 379–406.CrossRefGoogle Scholar
  72. Walker, D. L., & Gold, R. E. (1991). Effects of the novel NMDA antagonist, NRC 12626, on long-term potentiation, learning and memory. Brain Research, 549, 213–221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. C. Bennett
    • 1
  • G. M. Rose
    • 2
  1. 1.Experimental Therapeutics BranchNINDSUSA
  2. 2.Neuroscience Drug DiscoveryBristol-Myers Squibb Co.USA

Personalised recommendations