Advertisement

What Primate Calls Can Tell Us about Human Evolution

  • Philip Lieberman

Abstract

An influential, traditional school of linguistics and philosophy that is often identified with Noam Chomsky and his followers, but which is by no means limited to “generative” or “transformational” linguistics, categorically differentiates the neural bases of human language from the vocal communications of other primates (e.g., Bickerton, 1990; Wilkins and Wakefeld, in press). There supposedly is no direct evolutionary link between the brain mechanisms that regulate vocal communication in monkeys and apes and the brain mechanisms that regulate human speech and syntax. Adherents of this position note that whereas the neural substrate regulating human speech allows arbitrary sequences of speech sounds to be produced on a “voluntary” basis, non-human primate’s vocalizations are largely “bound” to particular emotional states. Hewes (1973), for example, proposes that the first form of human language involved manual signing rather than vocal signals. Pinker and Bloom (1990) claim that the neural mechanisms that make human syntax possible evolved from some part of the non-human primate brain that had no function. An extreme position is found in Chomskÿ s (1972, 1976, 1980) repeated claims that human language could not have evolved by means of Darwinian processes.

Keywords

Basal Ganglion Progressive Supranuclear Palsy Speech Production Progressive Supranuclear Palsy Human Speech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, M. A., Feldman, R.G., and Willis, A. L., 1974, The “subcortical dementia” of progressive supranuclear palsy, J. Neurol. Neurosurg. Psychiat. 37: 121 - 130.PubMedCrossRefGoogle Scholar
  2. Aldridge, J. W., Berridge, K.C., Herman, M., and Zimmer, L., 1993, Neuronal coding of serial order: Syntax of grooming in the neostriatum, Psycho!. Sci. 4: 391 - 395.CrossRefGoogle Scholar
  3. Alexander, M. P., Naeser, M. A., and Palumbo, C. L., 1987, Correlations of subcortical CT lesion sites and aphasia profiles, Brain 110: 961 - 991.PubMedCrossRefGoogle Scholar
  4. Bickerton, D., 1990, “Language and Species”, University of Chicago Press, Chicago.Google Scholar
  5. Brodmann, K., 1909, “Vergleichende Histologische Lokalisation der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues”, Barth, Leipzig.Google Scholar
  6. Cheney, D. L. and Seyfarth, R. M., 1990, “How Monkeys See the World”, University of Chicago Press, Chicago.Google Scholar
  7. Chomsky, N., 1972, “Language and Mind”, Extended Edition, Harcourt, Brace and World, New York.Google Scholar
  8. Chomsky, N., 1976, On the nature of language, in: “Origins and Evolution of Language and Speech”, H. B. Steklis, S. R. Hamad, and J. Lancaster, eds., New York Academy of Sciences, New York.Google Scholar
  9. Chomsky, N., 1980, Rules and representations, Behay. Brain Sci. 3: 1 - 61.CrossRefGoogle Scholar
  10. Chomsky, N., 1986, “Knowledge of Language: Its Nature, Origin and Use”, Prager, New York.Google Scholar
  11. Cummings, J. L. and Benson, D. F.. 1984, Subcortical dementia: Review of an emerging concept, Arch. Neurol. 41: 874 - 879.PubMedCrossRefGoogle Scholar
  12. D'Antonia, R., Baron, J. C., Samson, Y., Serdaru, M., Viader, F., Agid, Y., and Cambier, J., 1985, Subcortical dementia: Frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy, Brain 108: 785 - 799.CrossRefGoogle Scholar
  13. Deacon, T. W., 1988, Human brain evolution II. Embryology and brain allometry, in: “Intelligence and Evolutionary Biology”, NATO ASI Series, H. J. Jerison and I. Jerison, eds., Springer, Berlin.Google Scholar
  14. Fant, G., 1960, “Acoustic Theory of Speech Production”, Mouton, The Hague.Google Scholar
  15. Fitch, W. T. III, 1993, Vocal tract length and the evolution of language, PhD dissertation, Brown University, Providence.Google Scholar
  16. Fodor, J., 1983, Modularity of Mind, MIT Press, Cambridge, Mass.Google Scholar
  17. Gardner, R. A., Gardner, B. T., and Van Cantfort, T. E., 1989, “Teaching Sign Language to Chimpanzees”, State University of New York Press, Albany.Google Scholar
  18. Goodall, J., 1986, “The Chimpanzees of Gombe: Patterns of Behavior”, Harvard, Cambridge, Mass..Google Scholar
  19. Grossman, M., Carvell, S., Gollomp, S., Stern, M. B., Vernon, G., and Hurtig, H. I., 1991, Sentence comprehension and praxis deficits in Parkinson’s disease, Neurology 41: 160 - 1628.Google Scholar
  20. Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., and Hurtig, H. I., 1992, Sentence comprehension in Parkinson’s disease: The role of attention and memory, Brain Lang. 42: 347 - 384.PubMedCrossRefGoogle Scholar
  21. Hauser, M. D., 1989, Ontogenetic changes in the comprehension and production of vervet monkey (Cercopithecus aethiops) vocalizations, J. Comp. Psycho!. 103: 149 - 158.CrossRefGoogle Scholar
  22. Hauser, M. D., 1992, Costs of deception: Cheaters are punished in rhesus monkeys (Alacaca mulatta), Proceed. Nat. Acad. Sci. 89: 12137 - 12139.CrossRefGoogle Scholar
  23. Hauser, M.D., Evans, C.S., and Marter, P., 1993, The role of articulation in the production of rhesus monkey (Macaca mulatta) vocalizations,. I nim. Behan. 45: 423 - 434.Google Scholar
  24. Hayes, K.J. and Hayes, C., 1951, The intellectual development of a home-raised chimpanzee, Proceed. Amer. Phil. Soc. 95: 105 - 109.Google Scholar
  25. Hewes, G.W., 1973, Primate communication and the gestural origin of language, Curr. Anthropol. 14: 5 - 24.CrossRefGoogle Scholar
  26. Kimura, D., 1979, Neuromotor mechanisms in the evolution of human communication, in: “Neurobiology of Social Communication in Primates”, H.D. Steklis and M.J. Raleigh, eds., Academic Press, New York.Google Scholar
  27. Kuhl, P.K., Williams, K.A., Lacerda, F., Stevens, K.N., and Lindblom, B., 1992, Linguistic experience alters phonetic perception in infants by 6 months of age, Science 255: 606 - 608.PubMedCrossRefGoogle Scholar
  28. Lange, K.W., Robbins, T.W., Marsden, C.D., James, M., Owen, A.M., and Paul, G.M., 1992, L-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction, Psychopharmacol. 107: 394 - 404.CrossRefGoogle Scholar
  29. Lieberman, P., 1961, Perturbations in vocal pitch, J. Acoust. Soc. Amer. 33: 597 - 603.CrossRefGoogle Scholar
  30. Lieberman, P., 1965, On the acoustic basis of the perception of intonation and stress by linguists, Word 21: 40 - 54.Google Scholar
  31. Lieberman, P., 1968, Primate vocalizations and human linguistic ability, J. Acoust. Soc. Amer. 44: 1157 1164.Google Scholar
  32. Lieberman, P., 1975, “On the Origins of Language: An Introduction to the Evolution of Speech”, Macmillan, New York.Google Scholar
  33. Lieberman, P., 1984, The Biology and Evolution of Language”, Harvard University Press, Cambridge, Mass.Google Scholar
  34. Lieberman, P., 1985. On the evolution of human syntactic ability: Its pre-adaptive bases - motor control and speech, J. Human Evol. 14: 657 - 668CrossRefGoogle Scholar
  35. Lieberman, P., 1991, “Uniquely Human: The Evolution of Speech, Thought, and Selfless Behavior”, Harvard University Press, Cambridge. Mass.Google Scholar
  36. Lieberman, P., 1992, Could an autonomous syntax module have evolved? Brain Lang. 43: 768 - 774.PubMedCrossRefGoogle Scholar
  37. Lieberman, P., in press, Biologically bound behavior, free-will, and human evolution, in: “Conflict and Cooperation in Nature”, J. I. Casti, ed., John Wiley, New York.Google Scholar
  38. Lieberman, P., Crelin, E. S., and Klatt, D. H., 1972, Phonetic ability and related anatomy of the newborn, adult human, Neanderthal man, and the chimpanzee, Amer. Anthropol. 74: 287 - 307.CrossRefGoogle Scholar
  39. Lieberman, P., Friedman, J., and Feldman, L. S., 1990, Syntactic deficits in Parkinson’s disease, J. Nerv. Aient. Dis. 178: 360 - 365.CrossRefGoogle Scholar
  40. Lieberman, P., Kako, E. T., Friedman, J., Tajchman, G., Feldman, L. S., and Jiminez, E. B., 1992, Speech production, syntax comprehension, and cognitive deficits in Parkinson’s disease, Brain Lang. 43: 169 - 189.PubMedCrossRefGoogle Scholar
  41. Lisker, L. and Abramson, A. S., 1964, A cross language study of voicing in initial stops: acoustical measurements, Word 20: 384 - 442.Google Scholar
  42. MacLean, P. D., 1985, Evolutionary psychiatry and the triune brain, Psycho!. Med. 15: 219 - 221.CrossRefGoogle Scholar
  43. MacLean, P. D. and Newman. J. D., 1988, Role of midline frontolimbic cortex in the production of the isolation call of squirrel monkeys, Brain Research 450: 111 - 123.PubMedCrossRefGoogle Scholar
  44. Metter, E. J., Riege, W. H., Hanson, W. R., Phelps, M. E., and Kuhl, D. E., 1984, Local cerebral metabolic rates of glucose in movement and language disorders from positron tomography, Amer. J. Physiol. 246: R897 - R900.Google Scholar
  45. Metter, E. J., Kempler, D., Jackson, C. A., Hanson, W. R., Reige, W. H., Camras, L. M., Mazziotta, J. C., and Phelps, M. E., 1987, Cerebral glucose metabolism in chronic aphasia, Neurology 37: 1599 - 1606.PubMedCrossRefGoogle Scholar
  46. Metter, E. J., Kempler, D., Jackson, C., Hanson, W. R., Mazziotta, J. C., and Phelps M. E., 1989, Cerebral glucose metabolism in Wernicke’s, Broca’s, and conduction aphasia, Arch. Neurol. 46: 27 - 34.PubMedCrossRefGoogle Scholar
  47. Morris, R. G., Downes, J. J., Sahakian, B. J., Evenden, J. L., Heald, A., and Robbins, T. W., 1988, Planning and spatial working memory in Parkinson’s disease, J. Neurol. Neurosurg. Psychiat. 51: 757 - 766.PubMedCrossRefGoogle Scholar
  48. Naeser, M. A., Alexander, M. P., Helms-Estabrooks, N., Levine, H. L., Laughlin, S. A., and Geschwind, N., 1982, Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes, Arch. Neural. 39: 2 - 14.CrossRefGoogle Scholar
  49. Natsopoulos, D., Grouios, G., Bostantzopoulou, S., Mentenopoulos, G., Katsarou, Z., and Logothetis, J., in press, Algorithmic and heuristic strategies in comprehension of complement clauses by patients with Parkinson’s disease, Neuropsvchol.Google Scholar
  50. Parent, A., 1986, “Comparative Neurobiology of the Basal Ganglia”, John Wiley, New York.Google Scholar
  51. Pinker, S. and Bloom, P., 1990, Natural selection and natural language, Behay. Brain Sci. 13: 707 - 784.CrossRefGoogle Scholar
  52. Rumbaugh, D. M. and Savage-Rumbaugh, E. S., 1992, Biobehavioral roots of language: Words, apes and a child. Conference paper presented at University of Bielefeld, Germany.Google Scholar
  53. Sahakian, B. J., Morris, R. G., Evenden, J. L., Heald, A., Levy, R., Philpot, M., and Robbins, T. W., 1988, A comparative study of visuospatial memory, and learning in Alzheimer-type dementia and Parkinson’s disease, Brain 111: 695 - 718.PubMedCrossRefGoogle Scholar
  54. Savage-Rumbaugh, S., McDonald, K., Sevcik, R. A., Hopkins, W. D., and Rubert, E., 1986, Spontaneous symbol acquisition and communicative use by pygmy chimpanzees (Pan paniscus), J. Exp. Psycho!. General 115: 211 - 235.CrossRefGoogle Scholar
  55. Stuss, D. T. and Benson, D. F., 1986, “The Frontal Lobes”, Raven, New York.Google Scholar
  56. Sutton, D. and Jürgens, U., 1988, Neural control of vocalization, in: “Comparative Primate Biology, Volume 4”, H. D. Steklis and J. Erwin, eds., Arthur D. Liss, New York.Google Scholar
  57. Wilkins, W. K. and Wakefeld, J., in press, Brain evolution and neurolinguistic preconditions, Behay. Brain Sci.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Philip Lieberman
    • 1
  1. 1.Cognitive and Linguistic SciencesBrown UniversityProvidenceUSA

Personalised recommendations