Advertisement

Ring Statistics in Glass Networks

  • Matthieu Micoulaut

Abstract

We present in this paper a statistical model which gives elements of the intermediate-range order (IRO) structure in some current glass networks. Starting from typical short-range order (SRO) clusters, we construct multiplets of growing size by agglomeration of the SRO clusters and compute a corresponding probability. The assumption that a rapid stabilization of the fraction of atoms trapped inside rings is obtained with size-growing clusters, determines the involved ring-formation energies and the computed ring statistics is then compared to experiment.

Keywords

Central Atom Boron Atom Glass Network Ring Fraction Germanium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. L. Galeener, Diffus. Defect. Media 54–55, 305 (1988); R. A. Barrio, F. L. Galeener, E. Martinez, and R. J. Elliott, Phys. Rev. B 48,15 672 (1993).Google Scholar
  2. 2.
    J. Krogh-Moe, Phys. Chem. Glasses 6, 46 (1966).Google Scholar
  3. 3.
    L. F. Gladden and S. R. Elliott, Phys. Rev. Lett 59, 908 (1987).CrossRefGoogle Scholar
  4. 4.
    R. Dupree, D. Holland, P. W. MacMillan, and R. F. Pettifer, J. Non-Cryst. Solids 68, 399 (1984).CrossRefGoogle Scholar
  5. 5.
    R. Kerner et al, Z. Phys. D 29, 231 (1994); R.. Kerner, Comp. Mat. Science 2, 39 (1994).Google Scholar
  6. 6.
    R.. Kerner, J. Non-Cryst. Solids 182, 9 (1995).CrossRefGoogle Scholar
  7. 7.
    R. L. Mozzi and B. E. Warren, J. Appl. Cristallogr 3, 153 (1970).CrossRefGoogle Scholar
  8. 8.
    M. Micoulaut, R. Kerner, and D. M. Dos Santos-toff, J. Phys. Condens. Matter 7, 8035 (1995).CrossRefGoogle Scholar
  9. 9.
    R. Kerner, these proceedings p. 323.Google Scholar
  10. 10.
    G. E. Jellison, L. W. Panek, P. J. Bray, and G. B. Rouse Jr., J. Chem.. Phys 66, 802 (1977); P. A. V. Johnson, A. C. Wright, and R. N. Sinclair, J. Non-Cryst. Solids 50, 281 (1982); A. C. Ilannon et al, J. Non-Cryst. Solids 177, 299 (1994).Google Scholar
  11. 11.
    G. E. Walrafen, M. S. Hokmabadi, P. N. Krishnan, and S. Guha, J. Chem.. Phys 79, 3609 (1983).CrossRefGoogle Scholar
  12. 12.
    M. K. Murthy and J. Ip, Nature 201, 285 (1964).CrossRefGoogle Scholar
  13. 13.
    M. Ueno, M. Misawa, and K. Suzuki, Physica B 120, 347 (1983).CrossRefGoogle Scholar
  14. 14.
    G. E. Henderson and M. E. Fleet, J. Non-Cryst. Solids 134, 259 (1991).CrossRefGoogle Scholar
  15. 15.
    F. L. Galeener, The Physics of Disordered Materials, edited by D. Adler, H. Fritzsche, and S. R. Ovshinsky, (1985).Google Scholar
  16. 16.
    G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, Am. Mineral 70, 946 (1985).Google Scholar
  17. 17.
    B. Krebs, Angew. Chem. Int. Ed. Engl 22, 113 (1983).CrossRefGoogle Scholar
  18. 18.
    S. W. Martin and D. R. Bloyer, J. Am. Ceram.. Soc 73, 3481 (1990).CrossRefGoogle Scholar
  19. 19.
    S. W. Martin, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Matthieu Micoulaut
    • 1
  1. 1.Laboratoire GCR-UFR de PhysiqueParis VI, CNRS-URA 769, Université Pierre et Marie CurieParisFrance

Personalised recommendations