Spin Fluctuation Effects in High-Tc Superconductors

  • Sören Grabowski
  • Jörg Schmalian
  • K. H. Bennemann


By using a theory that includes antiferromagnectic short-ranged correlations, recent experiments on the high-transition temperature (high-T c ) cuprate superconductors like photoemission, tunneling measurements, and the doping dependence of T c can be understood. In particular for tnrclerdoped compounds, we find the formation of shadows of the Fermi surface, k-dependent pseudogap structures in the excitation spectrum and by considering interlayer effects a blocking of the c-axis charge transport as precursors of the antiferromagnetic phase transition.


Fermi Surface Cooper Pair Optimal Doping Doping Dependence Shadow State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).CrossRefGoogle Scholar
  2. 2.
    D. J. Scalapino, Phys. Rep. 250, 331 (1995).CrossRefGoogle Scholar
  3. S. Chakravarty et al., Science 261, 337 (1993);Google Scholar
  4. P. W. Anderson, Science 268, 1154 (1995);CrossRefGoogle Scholar
  5. P. W. Anderson, Science 256, 1526 (1992).CrossRefGoogle Scholar
  6. P. Aebi et al., Phys. Rev. Lett. 72, 2757 (1994).CrossRefGoogle Scholar
  7. 5.
    Z. X. Shen and D. S. Dessau, Phys. Rep. 253, 1 (1995).CrossRefGoogle Scholar
  8. 6.
    D. S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996);Google Scholar
  9. A. G. Loeser et al.,to be published in Science.Google Scholar
  10. 7.
    D. S. Desau et al., Phys. Rev. Lett. 66, 2160 (1991).Google Scholar
  11. 8.
    J. M. Tranquada et al., Phys. Rev. B 46, 5561 (1992).Google Scholar
  12. 9.
    S. L. Cooper and K. E. Gray, in Physical Properties of High-T„ Superconductors IV, edited by D. M. Ginsberg ( World Scientific, Singapore, 1994 ).Google Scholar
  13. 10.
    Although the LSCO system has only one layer within a unit cell, the nearest-neighbor planes from different cells are antiferromagnetically correlated. However, this intercell coupling is much smaller than the bilayer effects in YBCO.Google Scholar
  14. 11.
    The FS of this model dispersion is similar to the LSCO system. Nevertheless we can draw similar physical conclusion by using bare dispersion that are more appropriate for YBCO or BSCCO or by taking a k-dependent .Google Scholar
  15. O. K. Andersen et al., J. Phys. Chem. Solids 56, 1573 (1995).Google Scholar
  16. 13.
    We carefully checked the dependence of our results on U and t ,but found no physical significant changes in our data up to values of U = 6t and for t = 0.1 − 0.8t. However, t = 0.4t was suggested by LDA calculations for YBCO.Google Scholar
  17. N. E. Bickers et al., Phys. Rev. Lett. 62, 961 (1989).Google Scholar
  18. P. Monthoux et al., Phys. Rev. Lett. 72, 1874 (1994);Google Scholar
  19. C. H. Bickers et al., Phys. Rev. Lett. 72, 1870 (1994);Google Scholar
  20. T. Dahm et al., Phys. Rev. Lett. 74, 793 (1995).Google Scholar
  21. 16.
    S. Grabowski, M. Langer, J. Schmalian, and K. H. Bennemann, Europhys. Lett. 34, 219 (1996).CrossRefGoogle Scholar
  22. In bilayer systems we only considered intraband Cooper formation. This refers to even parity pairing with respect to the bilayer inversion symmetry yielding Δ(k, ω) 0 and a larger T c than the odd (interband) pairing state with Δ(k, ω) = 0. See also J. Maly et al., Phys. Rev. B 53, 6786 (1996). The actual calculations were performed on a (64 × 64) square lattice with an energy resolution of 0.014t ≈ 4 meV. The numerical procedure is described in J. Schmalian, M. langer, S. Grabowski, and K. H. Bennemann, Comp. Phys. Comm. 93, 141 (1996).Google Scholar
  23. 18.
    Note that τ −1(k, ω) generates naturally an energy and consequently a temperature scale for the magnetic excitations. By comparing the doping dependence and the absolute magnitude of τ −1(k, ω) at the FS and the Fermi energy with the characteristic temperature T AF observed in transport measurements for LSCO by H. Y. Hwang et al., Phys. Rev. Lett. 72, 2636 (1994), we find an excellent agreement with the experimental data.Google Scholar
  24. 19.
    The reason for the optimal doping in our results is physically different from the antiferromagnetic van Hove scenario (AFVH) by Dagotto et al., Phys. Rev. Lett. 74, 310 (1995). In the AFVH approach T c becomes maximal when the peak in the momentum averaged density of states ϱ(ω) crosses the Fermi level, but is not dependent on lifetime effects and the variation of the pairing interaction on doping.Google Scholar
  25. H. Ding et al., Phys. Rev. Lett. 76, 1533 (1996).Google Scholar
  26. D. Mandrus et al., Nature 351, 460 (1991).Google Scholar
  27. R. J. Radtke et al., Phys. Rev. B 53, R552 (1996).Google Scholar
  28. A. P. Kampf et al., Phys. Rev. B 42, 7967 (1990).Google Scholar
  29. 24.
    M. Langer, J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev. Lett. 75, 4508 (1995).CrossRefGoogle Scholar
  30. 25.
    V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).CrossRefGoogle Scholar
  31. 26.
    S. Doniach and M. Inni, Phys. Rev. B 41, 6668 (1990).CrossRefGoogle Scholar
  32. 27.
    We acknowledge the financial support of the DFG, thank Z. X. Shen for sending us his papers prior to publication and E. Dagotto for useful discussions.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sören Grabowski
    • 1
  • Jörg Schmalian
    • 1
  • K. H. Bennemann
    • 1
  1. 1.Institut für Theoretische PhysikFreie Universität BerlinBerlinGermany

Personalised recommendations