Advertisement

Temporal Flexibility in Avian Reproduction

Patterns and Mechanisms
  • Thomas P. Hahn
  • Timothy Boswell
  • John C. Wingfield
  • Gregory F. Ball
Part of the Current Ornithology book series (CUOR, volume 14)

Abstract

In changing environments, birds time reproduction to optimize survival of young (e.g., Wingfield, 1983; Perrins, 1970; Lack, 1968). Selective features of the environment (ultimate factors; Baker, 1938) favor those individuals that breed in reasonably close synchrony with the changes occurring in the environment. These ultimate factors include food availability, weather, competition, predation, or any other feature of the physical or biotic environment that has direct effects on the success of a reproductive attempt. Animals prepare for changes in ultimate factors by responding to proximate factors, or cues, from the environment (Baker, 1938). These cues provide reliable information either in the long or short term about the suitability of the environment for breeding. Proximate cues, then, are the features of the environment that actually influence the physiology, morphology, and behavior of individuals.

Keywords

Zebra Finch Japanese Quail House Sparrow Luteinizing Hormone Reproductive Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, C. G., 1926, Notes on the nesting of the Band-tailed Pigeon, Condor 29: 121–123.Google Scholar
  2. Adkisson, C. S., 1996, Red Crossbill (Loxia curvirostra), In: The Birds of North America, No. 256 ( A. Poole and F. Gill, eds.), Academy of Natural Sciences, Philadelphia, and American Ornithologists’ Union, Washington, D.C.Google Scholar
  3. Anderson, T. R., 1978, Population studies of European Sparrows in North America, Occ. Pap. Mus. Nat. Hist. Univ. Kansas 70: 1–58.Google Scholar
  4. Bailey, A. M., Niedrach, R. J., and Bailey, A. L., 1953, The Red Crossbills of Colorado, Museum Pictorial No. 9, Denver Museum of Natural History.Google Scholar
  5. Bailey, F. M., 1928, Birds of New Mexico, New Mexico Department of Game and Fish, Santa Fe, New Mexico.Google Scholar
  6. Baker, J. R., 1938, The evolution of breeding seasons, In: Evolution: Essays on Aspects of Evolutionary Biology ( G. B. DeBeer, ed.), Clarendon Press, Oxford, pp. 161–177.Google Scholar
  7. Ball, G. F., 1993, The neural integration of environmental information by seasonally breeding birds, Am. Zool. 33: 185–199.Google Scholar
  8. Ball, G. F., and Hahn, T. P., 1997, GnRH neuronal systems in birds and their relation to the control of seasonal reproduction, In: GnHH Neurons: Gene to Behavior ( I. S. Parhar and Y. Sakuma, eds.), Brain Shuppan Publishers, Tokyo. pp. 325–342.Google Scholar
  9. Ball, G. F., Besmer, H. R., Li, Q., and Ringer, M. A., 1994, Effects of social stimuli on gonadal growth and brain content of cGnRH-I in female starlings on different photoperiiods, Soc. Neurosci. Abstr. 20: 159.Google Scholar
  10. Bartholomew, G. A., 1949, The effect of light intensity and day length on reproduction in the English Sparrow, Bull. Harvard Mus. Comp. Zool. 101: 433–476.Google Scholar
  11. Benkman, C. W., 1987, Food profitability and the foraging ecology of crossbills, Ecol. Monogr. 57: 251–267.Google Scholar
  12. Benkman, C. W., 1990, Foraging rates and the timing of crossbill reproduction, Auk 107: 376–386.Google Scholar
  13. Benkman, C. W., 1992, White-winged Crossbill (Loxia leucoptera), In: The Birds of North America, No. 27 ( A. Poole, P. Stettenheim, and F. Gill, eds.), Academy of Natural Sciences, Philadelphia, and American Ornithologists’ Union, Washington, D. C.Google Scholar
  14. Bent, A. C., 1963, Life Histories of North American Gallinaceous Birds, Dover, New York.Google Scholar
  15. Bent, A. C., 1965, Life Histories of North American Blackbirds, Orioles, Tanagers, and Allies, Dover, New York.Google Scholar
  16. Berthold, P., and Gwinner, E., 1978, Jahresperiodik der Gonadengrösse beim Fichtenkreuzschnabel (Loxia curvirostra), J. Ornithol. (Berlin) 119: 338–339.Google Scholar
  17. Bissonnette, T. H., and Wadlund, A. P. W., 1931, J. Morph. 52: 403–407.Google Scholar
  18. Blühm, C. K., Schwabl, H., Schwab, I., Perera, A., Follett, B. K., Goldsmith, A. R., and Gwinner, E., 1991, Variation in hypothalamic gonadotropin-releasing hormone content, plasma and pituitary LH, and in-vitro testosterone release in a long-distance migratory bird, the Garden Warbler (Sylvia borin), under constant photoperiods, J. Endocrinol. 128: 339–345.PubMedGoogle Scholar
  19. Boag, P. T., and Grant, P. R., 1984, Darwin’s finches (Geospiza) in Isla Daphne Major, Galapagos: breeding and feeding ecology in a climatically variable environment, Ecol. Monogr. 54: 463–489.Google Scholar
  20. Boswell, T., 1991, The physiology of migratory fattening in the European Quail (Coturnix coturnix), Ph.D. Thesis, University of Bristol, Bristol, U.K.Google Scholar
  21. Brehm, A. E., 1924, Brehms Tierleben, Vol. 4, C. W. Neumann, Leipzig.Google Scholar
  22. Burger, J. W., 1947, On the relation of day length to the phases of testicular involution and inactivity of the spermatogenic cycle of the starling, J. Exp. Zool. 195: 259–268.Google Scholar
  23. Burger, J. W., 1953, The influence of photic and psychic stimuli on the reproductive cycle of the male starling, Sturnus vulgaris, J. Exp. Zoo. 124: 227–239.Google Scholar
  24. Burleigh, T. D., 1972, Birds of Idaho, Claxton Printers, Caldwell, Idaho.Google Scholar
  25. Cho, R. N., Hahn, T. P., MacDougall-Shackleton, S., and Ball, G. F., in press. Seasonal variation in brain GnRH in free-living breeding and photorefractory House Finches (Carpodacus mexicanus). Gen. Comp. Endocrinol.Google Scholar
  26. Cockrem, J. A., 1995, Timing of seasonal breeding in birds, with particular reference to New Zealand birds, Heprod. Fertil. Dey. 7: 1–19.Google Scholar
  27. Colwell, R. K., 1974, Predictability, constancy, and contingency of periodic phenomena, Ecology 55: 1148–1153.Google Scholar
  28. Coombs-Hahn, T. P., 1993, Integration of environmental cues to time reproduction in an opportunistic breeder, the Red Crossbill (Loxia curvirostra), Ph.D. Dissertation, University of Washington, Seattle.Google Scholar
  29. Cottam, C., 1929, The fecundity of the English Sparrow in Utah, Wilson Bull. 43: 193–194.Google Scholar
  30. Cynx, J., and Nottebohm, F., 1992, Role of gender, season, and familiarity in discrimination of conspecific song by Zebra Finches Taeniopygia guttata, Proc. Natl. Acad. Sci. USA 89: 1368–1371.PubMedGoogle Scholar
  31. Davies, S. J. J. F., 1977, The timing of breeding by the Zebra Finch Taeniopygia castanotis at Mileura, western Australia, Ibis 119: 369–372.Google Scholar
  32. Davis, J., and Davis, B. S., 1954, The annual gonad and thyroid cycles of the English Sparrow in southern California, Condor 56: 328–345.Google Scholar
  33. Dawson, A., 1991a, Effect of daylength on the rate of recovery of photosensitivity in male starlings (Sturnus vulgaris), J. Heprod. Fertil. 93: 521–524.Google Scholar
  34. Dawson, A., 1991b, Photoperiodic control of testicular regression and moult in male House Sparrows, Passer domesticus, Ibis 133: 312–316.Google Scholar
  35. Dawson, A., and Goldsmith, A., 1983, Plasma prolactin and gonadotrophins during gonadal development and the onset of photorefractoriness in male and female starlings (Sturnus vulgaris) on artificial photoperiods, J. Endocrinol. 97: 253–260.PubMedGoogle Scholar
  36. Dawson, A., Follett, B. K., Goldsmith, A. R., and Nicholls, T. J., 1985a, Hypothalamicgonadotropin-releasing hormone and pituitary and plasma FSH and prolactin during photostimulation and photorefractoriness in intact and thyroidectomized starlings (Sturnus vulgaris), J. Endocrinol. 105: 71–77.PubMedGoogle Scholar
  37. Dawson, A., Goldsmith, A. R., and Nicholls, T. J., 1985b, Development of photorefractoriness in intact and castrated male starlings (Sturnus vulgaris) exposed to different periods of long daylengths, Physiol. Zool. 58: 253–261.Google Scholar
  38. Dawson, A., Goldsmith, A. R., and Nicholls, T. J., 1986, Seasonal changes in testicular size and in plasma follicle-stimulating hormone and prolactin concentrations in thyroidectomized male and thyroidectomized castrated starlings (Sturnus vulgaris), Gen. Comp. Endocrinol. 63: 38–44.PubMedGoogle Scholar
  39. Dunnett, G. M., 1955, The breeding of the starling Sturnus vulgaris in relation to its food supply, Ibis 97: 619–662.Google Scholar
  40. Ewald, P. W., and Rohwer, S., 1982, Effects of supplemental feeding on timing of breeding, clutch size and polygyny in Red-winged Blackbirds Agelaius phoeniceus, J. Anim. Ecol. 51: 429–450.Google Scholar
  41. Farner, D. S., and Follett, B. K., 1979, Reproductive periodicity in birds, In: Hormones and Evolution ( E. J. W. Barrington, ed.), Academic Press, New York. pp. 829–872.Google Scholar
  42. Farner, D. S., and Gwinner, E., 1980, Photoperiodicity, circannual and reproductive cycles, In: Avian Endocrinology ( A. Epple and M. H. Stetson, eds.), Academic Press, New York, pp. 331–366.Google Scholar
  43. Farner, D. S., and Serventy, D. L., 1960, The timing of reproduction in birds in the arid regions of Australia, Anat. Rec. 137: 354.Google Scholar
  44. Farner, D. S., Donham, R. S., Lewis, R. A., Mattocks, P. W., Jr., Darden, T. R., and Smith, J. P., 1977, The circadian component in the photoperiodic mechanism of the House Sparrow, Passer domesticus, Physiol. Zool. 50: 247–268.Google Scholar
  45. Farner, D. S., Donham, R. S., Matt, D. S., Mattocks, P. W., Jr., Moore, M. C., and Wingfield, J. C., 1983, The nature of photorefractoriness, In: Avian Endocrinology. Environmental and Ecological Perspectives (S. 1. Mikami, K. Homma, and M. Wada, eds.), Japan Scientific Society Press, Tokyo, and Springer-Verlag, Berlin, pp. 149–166.Google Scholar
  46. Follett, B. K., 1984, Birds, In: Marshall’s Physiology of Reproduction, Vol. 1 ( G. E. Lamming, ed.), Longman Green, Edinburgh, pp. 283–350.Google Scholar
  47. Follett, B. K., and Nicholls, T. J., 1984, Photorefractoriness in Japanese Quail: possible involvement of the thyroid gland, J. Exp. Zool. 232: 573–580.PubMedGoogle Scholar
  48. Follett, B. K., and Nicholls, T. J., 1985, Influences of thyroidectomy and thyroxine replacement on photoperiodically controlled reproduction in quail, J. Endocrinol. 107: 211–221.PubMedGoogle Scholar
  49. Follett, B. K., and Pearce-Kelly, A., 1990, Photoperiodic control of the termination of reproduction in Japanese Quail (Coturnix coturnix japonica), Proc. Roy. Soc. Land. 242: 225–230.Google Scholar
  50. Follett, B. K., Nicholls, T. J., and Mayes, C. R., 1988, Thyroxine can mimic photo-periodically induced gonadal growth in Japanese Quail, J. Comp. Phsyiol. 157: 829–835.Google Scholar
  51. Foster, R. G., Plowman, G., Goldsmith, A. R., and Follett, B. K., 1987, Immunocytochemical demonstration of marked changes in the luteinizing hormone-releasing hormone system of photosensitive and photorefractory European Starlings, J. Endocrinol. 115: 211–220.PubMedGoogle Scholar
  52. Foster, R. G., Panzica, G. C., Parry, D. M., and Viglietti-Panzica, C., 1988, Immunocytochemical studies on the LHRH system of the Japanese Quail: influence by photoperiod and aspects of sexual differentiation, Cell Tiss. Res. 253: 327–335.Google Scholar
  53. Fowells, H. A., 1965, Silvics of Forest Trees in the United States, U.S. Department of Agriculture, Forest Service, Washington, D.C.Google Scholar
  54. Frith, H. J., and Tilt, R. A., 1959, Breeding of the Zebra Finch in the Murrumbridgee irrigation area, New South Wales, Emu 59: 289–295.Google Scholar
  55. Gibbs, H. L., and Grant, P. R., 1987, Ecological consequences of an exceptionally strong El Nino even on Darwin’s finches, Ecology 68: 1735–1746.Google Scholar
  56. Goldsmith, A. R., and Nicholls, T. J., 1984, Thyroidectomy prevents the development of photorefractoriness and the associated rise in plasma prolactin in starlings, Gen. Comp. Endocrinol. 54: 256–263.PubMedGoogle Scholar
  57. Goldsmith, A. R., Beakes, H., Glennie, L., Cuthill, I. C., Witter, M. S., and Ball, G. F., 1992, Hypothalamic LHRH in female starlings exposed to photoperiodic and nonphotoperiodic stimulation. Abstract for 5th International Congress on Avian Endocrinology, Edinburgh, Scotland.Google Scholar
  58. Grant, B. R., and Grant, P. R., 1989, Evolutionary Dynamics of a Natural Population, University of Chicago Press, Chicago.Google Scholar
  59. Grant, P. R., and Boag, P. T., 1980, Rainfall on the Galapagos and the demography of Darwin’s finches, Auk 97: 227–244.Google Scholar
  60. Grinnell, J., 1928, September nesting of the Band-tailed Pigeon, Condor 30: 126–127.Google Scholar
  61. Griscom, L., 1937, A monographic study of the Red Crossbill, Proc. Boston Soc. Nat. Hist. 41: 77–210.Google Scholar
  62. Groth, J. G., 1993, Evolutionary differentiation in morphology, vocalizations, and allozymes among nomadic sibling species in the North American Red Crossbill (Loxia curvirostra) complex, Univ. Calif. Publ. Zool. 127: 1–143.Google Scholar
  63. Gutierrez, R. J., Braun, C. E., and Zapatka, T. P., 1975,. Reproductive biology of the Bandtailed Pigeon in Colorado and New Mexico, Auk 92: 665–677.Google Scholar
  64. Gwinner, E., 1986, Circannual Rhythms, Springer-Verlag, Heidelberg.Google Scholar
  65. Gwinner, E., 1996, Circannual clocks in avian reproduction and migration, Ibis 138: 47–63.Google Scholar
  66. Gwinner, E., Dittami, J. P., and Beldhuis, J. J. A., 1988, The seasonal development of photoperiodic responsiveness in an equatorial migrant, the Garden Warbler Sylvia borin, J. Comp. Physiol. 162: 389–396.Google Scholar
  67. Hagenstein, W. M., 1936, Late nesting of the Band-tailed Pigeon, Murrelet 17: 21–22.Google Scholar
  68. Hahn, T. P., 1995, Integration of photoperiodic and food cues to time changes in reproductive physiology by an opportunistic breeder, the Red Crossbill, Loxia curvirostra (Ayes: Carduelinae), J. Exp. Zool. 272: 213–226.Google Scholar
  69. Hahn, T. P., in press, Reproductive seasonality in an opportunistic breeder, the Red Crossbill, Loxia curvirostra, Ecology.Google Scholar
  70. Hahn, T. P., and Ball, G. F., 1995a, Changes in brain GnRH associated with photorefractoriness in House Sparrows (Passer domesticus), Gen. Comp. Endocrinol. 99: 349–363.PubMedGoogle Scholar
  71. Hahn, T. P., and Ball, G. F., 1995b, Neuroendocrine basis of reproductive flexibility, Poultry Avian Biol. Rev. 6: 322.Google Scholar
  72. Hahn, T. P., Deviche, P. J., and Ball, G. F., 1995a, Seasonal patterns of LH secretion and hypothalamic GnRH levels in White-winged Crossbills, Loxia leucoptera, Poultry Avian Biol. Rev. 6: 327.Google Scholar
  73. Hahn, T. P., Wingfield, J. C., Mullen, R., and Deviche, P. J., 1995b, Endocrine bases of spatial and temporal opportunism in arctic breeding birds, Am. Zool. 35: 259–273.Google Scholar
  74. Hamner, W. M., 1966, Photoperiodic control of the annual testicular cycle in the House Finch, Carpodacus mexicanus, Gen. Comp. Endocrinol. 7: 224–233.Google Scholar
  75. Hamner, W. M., 1968, The photorefractory period of the House Finch, Ecology 49: 211–227.Google Scholar
  76. Hamner, W. M., 1971, On seeking an alternative to the endogenous reproductive rhythm hypothesis in birds, In: Biochronometry ( M. Menaker, ed.), National Academy of Sciences, Washington, D.C., pp. 448–461.Google Scholar
  77. Hamner, W. M., and Stocking, J., 1970, Why don’t Bobolinks breed in Brazil? Ecology 51: 743–751.Google Scholar
  78. Hegner, R. E., and Wingfield, J. C., 1986a, Gonadal development during autumn and winter in House Sparrows, Condor 88: 269–278.Google Scholar
  79. Hegner, R. E., and Wingfield, J. C., 1986b, Social modulation of gonadal development and circulating hormone levels during autumn and winter, In: Behavioural Rhythms ( Y. Queinnec and N. Delvolve, eds.), Privat, Toulouse, pp. 109–117.Google Scholar
  80. Immelmann, K., 1963a, Tierische Jahresperiodik in ökologischer Sicht: ein Beitrag zum Zeitgeberproblem, unter besondere Berücksichtigung der Brut und Mauserzeiten australischer Vögel, Zool. Jahrb. Abt. Syst. Okol. Geog. Tiere 91: 91–200.Google Scholar
  81. Immelmann, K., 1963b, Drought adaptations in Australian desert birds, In: Proceedings XIII International Ornithological Congress ( 1962 ), pp. 649–657.Google Scholar
  82. Jones, P. J., and Ward, P., 1976, The level of reserve protein as the proximate factor controlling timing of breeding and clutch size in the Red-billed Quelea, Quelea quelea, Ibis 118: 547–574.Google Scholar
  83. Kikkawa, J., 1980, Seasonality of nesting by Zebra Finches at Armidale, NSW, Emu 80: 13–20.Google Scholar
  84. King, J. R., Follett, B. K., Earner, D. S., and Morton, M. L., 1966, Annual gonadal cycles and pituitary gonadotropins in Zonotrichia leucophrys gambelii, Condor 68: 476–487.Google Scholar
  85. Komdeur, J., 1996, Seasonal timing of reproduction in a tropical bird, the Seychelles Warbler: a field experiment using translocation, J. Biol. Rhythms 11: 333–346.PubMedGoogle Scholar
  86. Lack, D., 1968, Ecological Adaptations for Breeding in Birds, Methuen, London. Ligon, J. D., 1971, Late summer-autumnal breeding of the Pinon Jay in New Mexico, Condor 73: 147–153.Google Scholar
  87. Ligon, J. D., 1974, Green cones of the Pinon Pine stimulate late summer breeding in the Pinon Jay, Nature 250: 80–82.PubMedGoogle Scholar
  88. Ligon, J. D., 1978, Reproductive interdependence of Pinon Jays and Pinon Pines, Ecol. Monogr. 48: 111–126.Google Scholar
  89. Lofts, B., and Murton, R. K., 1968, Photoperiodic and physiological adaptations regulating avian breeding cycles and their ecological significance, J. Zool. (London) 155: 327–394.Google Scholar
  90. Lofts, B., Murton, R. K., and Westwood, N. J., 1966, Gonadal cycles and the evolution of breeding seasons in British Columbidae, J. Zool. (London) 150: 249–272.Google Scholar
  91. Lofts, B., Murton, R. K., and Westwood, N. J., 1967a, Photo-responses of the Wood-Pigeon Columba palumbus in relation to the breeding season, Ibis 109: 338–351.Google Scholar
  92. Lofts, B., Murton, R. K., and Westwood, N. J., 1967b, Interspecific differences in photosensitivity between three closely related species of pigeons, J. Zool. (London) 151: 17–25.Google Scholar
  93. March, G. L., and Sadleir, R. M. F. S., 1970, Studies on the Band-tailed Pigeon (Columba fasciata) in British Columbia. 1. Seasonal changes in gonadal development and crop gland activity, Can. J. Zool. 48: 1353–1357.PubMedGoogle Scholar
  94. Marshall, A. J., 1959, Internal and environmental control of breeding, Ibis 101: 456–478.Google Scholar
  95. Marshall, A. J., 1970, Environmental factors other than light involved in the control of sexual cycles in birds and mammals, In: La photorégulation de la reproduction chez les oiseaux et les mammifères (J. Benoit and I. Assenmacher, eds. ), Paris, pp. 53–64.Google Scholar
  96. Marshall, A. J., and Disney, H. J. de S., 1956, Photostimulation of an equatorial bird (Quelea quelea, Linnaeus), Nature 177: 143–144.PubMedGoogle Scholar
  97. Marshall, A. J., and Serventy, D. L., 1958, The internal rhythm of reproduction in xerophilous birds under conditions of illumination and darkness, J. Exp. Biol. 35: 666–670.Google Scholar
  98. McCabe, T. T., and McCabe, E. B., 1933, Notes on the anatomy and breeding habits of crossbills, Condor 35: 136–147.Google Scholar
  99. Michael, C. W., 1928, Nesting time of Band-Tailed Pigeons in Yosemite Valley, Condor 30: 127.Google Scholar
  100. Millington, S. J., and Grant, P. R., 1984, The breeding ecology of the Cactus Finch (Geospiza scandens) on Isla Daphne Major, Galapagos, Ardea 72: 177–188.Google Scholar
  101. Moore, M. C., Donham, R. S., and Farner, D. S., 1982, Physiological preparation for autumnal migration in White-crowned Sparrows, Condor 84: 410–419.Google Scholar
  102. Moreau, R. E., 1931, Equatorial reflections on periodism in birds, Ibis 1: 553–570.Google Scholar
  103. Newton, I., 1973, Finches, Taplinger, Englewood Cliffs, New Jersey.Google Scholar
  104. Nicholls, T. J., Goldsmith, A. R., and Dawson, A., 1988, Photorefractoriness in birds and comparison with mammals, Physiol. Rev. 68: 133–176.PubMedGoogle Scholar
  105. Oksche, A., Farner, D. S., Serventy, D. L., Wolff, F., and Nichols, C. A., 1963, The hypothalamo-hypophysial neurosecretory system of the Zebra Finch (Taeniopygia castenotis), Z. Zellenforsch. 58: 846–914.Google Scholar
  106. Orians, G. H., 1960, Autumnal breeding in the Tricolored Blackbird, Auk 77: 379–398.Google Scholar
  107. Payne, R. B., 1969, Breeding seasons and reproductive physiology of Tricolored Blackbirds and Redwinged Blackbirds, Univ. Calif. Publ. Zool. 90: 1–115.Google Scholar
  108. Perrins, C. M., 1970, The timing of birds’ breeding seasons, Ibis 112: 242–255.Google Scholar
  109. Reinert, B. D., and Wilson, F. E., 1996, The thyroid and the hypothalamus-pituitaryovarian axis in American Tree Sparrows Spizella arboreal, Gen. Comp. Endocrinol. 103: 60–70.PubMedGoogle Scholar
  110. Riley, G. M., 1936, Light regulation of sexual activity in the male House Sparrow (Passer domesticus), Proc. Soc. Exp. Biol. Med. 34: 331–332.Google Scholar
  111. Robinson, J. E., and Follett, B. K., 1982, Photoperiodism in Japanese Quail: the termination of seasonal breeding by photorefractoriness, Proc. Roy. Soc. Lond. 215: 95–116.Google Scholar
  112. Rowan, W., 1925, Relation of light to bird migration and developmental changes, Nature 115: 494–495.Google Scholar
  113. Rowan, W., 1926, On photoperiodism, reproductive periodicity, and the annual migrations of birds and certain fishes, Proc. Boston Soc. Nat. Hist. 38: 147–189.Google Scholar
  114. Runfeldt, S., and Wingfield, J. C., 1985, Experimentally prolonged sexual activity in female sparrows delays termination of reproductive activity in their untreated mates, Anim. Behay. 33: 403–410.Google Scholar
  115. Saldanha, C. J., Deviche, P. J., and Silver, R., 1994, Increased VIP and decreased GnRH expression in photorefractory Dark-eyed Juncos (Junco hyemalis), Gen. Comp. Endocrinol. 93: 128–136.PubMedGoogle Scholar
  116. Sappington, J. N., 1977, Breeding biology of House Sparrows in north Mississippi, Wilson Bull. 89: 300–309.Google Scholar
  117. Schwab, R. G., and Lott, D. F., 1969, Testis growth and regression in starlings (Sturnus vulgaris) as a function of the presence of females, J. Exp. Zool. 171: 39–42.Google Scholar
  118. Selander, R. K., and Hauser, R. J., 1965, Gonadal and behavioral cycles in the Great-tailed Grackle, Condor 67: 157–182.Google Scholar
  119. Selander, R. K., and Nicholson, D. J., 1962, Autumnal breeding of Boat-tailed Grackles in Florida, Condor 64: 81–91.Google Scholar
  120. Serventy, D. L., 1971, Biology of desert birds, In: Avian Biology, Vol. 1 ( D. S. Farner, J. R. King, and K. C. Parkes, eds.), Academic Press, New York, pp. 287–339.Google Scholar
  121. Serventy, D. L., and Marshall, A. J., 1957, Breeding periodicity in Western Australian birds: with an account of unseasonal nesting in 1953 and 1955, Emu 57: 99–126.Google Scholar
  122. Sharp, P. J., 1993, Photoperiodic control of reproduction in the domestic hen, Poultry Sci. 72: 897–905.Google Scholar
  123. Sharp, P. J., 1996, Strategies in avian breeding cycles, Anim. Reprod. Sci. 42: 505–513.Google Scholar
  124. Silverin, B., and Viebke, P. A., 1994, Low temperatures affect the photoperiodically induced LH and testicular cycles differently in closely related species of tits (Parus spp.), Hormones Behay. 28: 199–206.Google Scholar
  125. Thayer, J. E., 1909, Letter to the editor, Condor 11: 142–143.Google Scholar
  126. Threadgold, L. T., 1960, A study of the annual cycle of the House Sparrow at various latitudes, Condor 62: 190–201.Google Scholar
  127. Tordoff, H. B., and Dawson, W. R., 1965, The influence of daylength on reproductive timing in the Red Crossbill, Condor 67: 416–422.Google Scholar
  128. Vaugien, L., 1952, Sur le comportement sexuel singulier de la Peruch ondulée, maintenue à l’obscurité, C. R. Acad. Sci. 234: 14–89.Google Scholar
  129. Vaugien, L., 1953, Sur l’apparition de la maturité sexuelle des jeunes Perruches ondulées mâles soumises à diverses conditions d’éclairement: Le développement testiculaire est plus rapide dans l’obscurité complète, Bull. Biol. Fr. Belg. 87: 274–286.Google Scholar
  130. Vleck, C. M., and Priedkalns, J., 1985, Reproduction in Zebra Finches: hormone levels and effect of dehydration, Condor 87: 37–46.Google Scholar
  131. Vorhies, C. T., 1928, Band-tailed Pigeon nesting in Arizona in September, Condor 30: 253.Google Scholar
  132. Wada, M., 1993, Low temperature and short days together induce thyroid activation and suppression of LH release in Japanese Quail, Gen. Comp. Endocrinol. 90: 355–363.PubMedGoogle Scholar
  133. Wada, M., Hatanaka, F., Tsuyoshi, H., and Sonoda, Y., 1990, Temperature modulation of photoperiodically induced LH secretion and its termination in Japanese Quail (Coturnix coturnix japonica), Gen. Comp. Endocrinol. 80: 465–472.PubMedGoogle Scholar
  134. Willard, F. C., 1913, Some late nesting notes from the Huachuca Mountains, Arizona, Condor 15: 41.Google Scholar
  135. Wilson, F. E., and Donham, R. S., 1988, Daylength and control of seasonal reproduction in male birds, In: Processing of Environmental Information in Vertebrates ( M. H. Stetson, ed.), Springer-Verlag, Berlin, pp. 101–120.Google Scholar
  136. Wilson, F. E., and Reinert, B. D., 1993, The thyroid and photoperiodic control of seasonal reproduction in American Tree Sparrows (Spizella arborea), J. Comp. Physiol. B 163: 563–573.PubMedGoogle Scholar
  137. Wilson, F. E., and Reinert, B. D., 1996, The timing of thyroid-dependent programming in seasonally breeding male American Tree Sparrows (Spizella arborea), Gen. Comp. Endocrinol. 103: 82–92.PubMedGoogle Scholar
  138. Wingfield, J. C., 1980, Fine temporal adjustments of reproductive function, In: Avian Endocrinology ( A. Epple and M. H. Stetson, eds.), Academic Press, New York, pp. 367–389.Google Scholar
  139. Wingfield, J. C., 1983, Environmental and endocrine control of reproduction: an ecological approach, In: Avian Endocrinology. Environmental and Ecological Perspectives ( S. I. Mikami, K. Homma, and M. Wada, eds.), Japan Scientific Society Press, Tokyo, and Springer-Verlag, Berlin, pp. 265–288.Google Scholar
  140. Wingfield, J. C., 1985, Environmental factors influencing the termination of reproduction in finches, In: Acta XVIII Congressus Internationalis Ornithologici ( V. D. Ilyichev and V. M. Gavrilov, eds.), Nauka, Moscow, pp. 478–487.Google Scholar
  141. Wingfield, J. C., 1993, Control of testicular cycles in the song sparrow Melospiza melodia: interaction of photoperiod and an endogenous program? Gen. Comp. Endocrinol. 92: 388–401.PubMedGoogle Scholar
  142. Wingfield, J. C., and Earner, D. S., 1978, The annual cycle of plasma irLH and steroid hormones in feral populations of the White-crowned Sparrow, Zonotrichia leucophrys gambelii, Biol. Reprod. 19: 1046–1056.PubMedGoogle Scholar
  143. Wingfield, J. C., and Farner, D. S., 1979, Some endocrine correlates of renesting after loss of clutch or brood in the White-crowned Sparrow, Zonotrichia leucophrys gambelü, Gen. Comp. Endocrinol. 38: 322–331.PubMedGoogle Scholar
  144. Wingfield, J. C., and Farner, D. S., 1993, Endocrinology of reproduction in wild species, Avian Biol. 9: 163–327.Google Scholar
  145. Wingfield, J. C., and Kenagy, G. J., 1991, Natural control of reproduction, In: Handbook of Comparative Endocrinology (P. K. T. Pang and M. P. Schreibman, eds.), Academic Press, New York, Vol. 4, pp. 181–241.Google Scholar
  146. Wingfield, J. C., Hahn, T. P., Levin, R., and Honey, P., 1992, Environmental predictability and control of gonadal cycles in birds, J. Exp. Zool. 261: 214–231.Google Scholar
  147. Wingfield, J. C., Hahn, T. P., and Doak, D., 1993, Integration of environmental factors regulating transitions of physiological state, morphology and behaviour, In: Avian Endocrinology ( P. J. Sharp, ed.), Society for Endocrinology, Bristol, pp. 111–112.Google Scholar
  148. Wingfield, J. C., Hahn, T. P., Wada, M., and Schoech, S., 1997, Effects of day length and temperature on gonadal development, body mass and fat depots in White-crowned Sparrows, Zonotrichia leucophrys pugetensis, Gen. Comp. Endocrinol. 107: 44–62.PubMedGoogle Scholar
  149. Zann, R. A., 1996, The Zebra Finch: A Synthesis of Field and Laboratory Studies, Oxford University Press, Oxford.Google Scholar
  150. Zann, R. A., Morton, S. R., Jones, K. R., and Burley, N. T., 1995, The timing of breeding by Zebra Finches in relation to rainfall in central Australia, Emu 95: 208–222.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Thomas P. Hahn
    • 1
  • Timothy Boswell
    • 2
  • John C. Wingfield
    • 3
  • Gregory F. Ball
    • 4
  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  2. 2.Roslin InstituteRoslin, MidlothianUK
  3. 3.Department of ZoologyUniversity of WashingtonSeattleUSA
  4. 4.Behavioral Neuroendocrinology Group, Department of PsychologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations