Physiological, Ecological, and Evolutionary Bases for the Avoidance of Chemical Irritants by Birds

  • Larry Clark
Part of the Current Ornithology book series (CUOR, volume 14)


The chemical senses in birds are only infrequently considered. This dearth of general appreciation of avian chemical sensory systems is understandable. Vision, audition, tactile, and thermal sensory systems have readily quantifiable stimuli and relatively few mediating receptor systems. In contrast, chemical signals are mediated by numerous sensory systems, the stimuli themselves are myriad, and the method by which the stimuli reach the receptor systems can at best be described as chaotic. Nonetheless the chemical senses are critical to the survival and feeding ecology of species. Recent reviews have described the functional and adaptive aspects of avian olfactory and gustatory systems (Waldvogel, 1989; Kare and Brand, 1986; Berkhoudt, 1985; Bang and Wenzel, 1986; Wenzel, 1973). This review considers the least generally understood chemical sensory system of birds, the avian trigeminal system.


Conditional Stimulus Avoidance Response Snow Goose Canada Goose Chemical Sens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, F. V., Grimes, R. W., and Melzack, R., 1984, Single nerve capsaicin: effects on pain and morphine analgesia in the formalin and foot-flick tests, Brain Res. 295: 77–84.PubMedGoogle Scholar
  2. Ainsworth, A., Hall, P., Wall, P. D., Allt, G., MacKenzie, M. L., Gibson, S., and Polak, J. M., 1981, Effects of capsaicin applied locally to adult peripheral nerve. Il Anatomy and enzyme and peptide chemistry of peripheral nerve and spinal cord, Pain 11: 379–388.PubMedGoogle Scholar
  3. Andoh, R., Sakurada, S., Kisara, K., Takahashi, M., and Ohsawa, K., 1982, Effects of intra-arterially administered capsaicinoids on vocalization in guinea-pigs and medial thalamic neuronal activity in cats, Nippon Yakurigaku Zasshi 79: 275–283.PubMedGoogle Scholar
  4. Askham, L. R., 1992, Efficacy of methyl anthranilate as a bird repellent on cherries, blueberries, and grapes, Proc. Vert. Pest Conf. 15: 137–141.Google Scholar
  5. Askham, L. R., and Fellman, J. K., 1989, The use of DMA to reduce robin depredation on cherries, Great Plains Wildl. Damage Control Workshop 9: 116–119.Google Scholar
  6. Avery, M. L., 1992, Evaluation of methyl anthranilate as a bird repellent in fruit crops, Proc. Vert. Pest Conf. 15: 130–133.Google Scholar
  7. Avery, M. L., and Decker, D. G,. 1992, Repellency of cinnamic acid esters to captive Red-winged Blackbirds, J. Wildl. Manage. 56: 800–805.Google Scholar
  8. Avery, M. L., and Decker, D. G., 1994, Responses of captive Fish Crows to eggs treated with chemical repellents, J. Wildl. Manage. 58: 261–266.Google Scholar
  9. Avery, M. L., Decker, D. G., Humphrey, J. S., Aronov, E., Linscombe, S. D., and Way, M. O., 1995, Methyl anthranilate as a rice seed treatment to deter birds, J. Wild!. Manage. 59: 50–56.Google Scholar
  10. Avery, M. L., Decker, D. G., Humphrey, J. S., and Laukert, C. G., 1996, Mint plant derivatives as blackbird feeding deterrents. Crop Prot. 15: 461–464.Google Scholar
  11. Ball, J. B., 1985, A study of the potential neurotoxic effects of capsaicin on primary afferent neurons in the bird, J. Anat. 140: 520.Google Scholar
  12. Bang, B., and Wenzel, B. M., 1986, Nasal cavity and olfactory system, in: Form and Function in Birds, Vol. 3 ( A. S. King and J. McLellan, eds.), Academic Press, London, pp. 195–225.Google Scholar
  13. Baraz, L. A., Khayutin, V. M., and Molnar, J., 1968, Analysis of the stimulatory action of capsaicin on receptors and sensory fibres of the small intestine in the cat, Acta Physiol. Hung. 33: 225–235.Google Scholar
  14. Bell, C. M., and Harestad, A. S., 1987, Efficacy of pine oil as a repellent to wildlife, J. Chem. Ecol. 13: 1409–1417.Google Scholar
  15. Benowitz, L., 1972, Effects of forebrain ablations on avoidance learning in chicks, Physiol. Behay. 9: 601–608.Google Scholar
  16. Berkhoudt, H., 1985, Structure and function of avian taste receptors, in: Form and Function in Birds, Vol. 3 ( A. S. King and J. McLelland, eds.), Academic Press, London, pp. 463–495.Google Scholar
  17. Blass, E. M., and Shide, D. J., 1994, Some comparisons among the calming and pain-relieving effects of sucrose, gluscose, fructose and lactose in infant rats, Chem. Senses 19: 239–249.PubMedGoogle Scholar
  18. Blass, E. M., Fitzgerald, E., and Kehoe, P., 1987, Interactions between sucrose, pain and isolation distress, Pharmacol. Biochem. Behay. 26: 483–489.PubMedGoogle Scholar
  19. Brower, L. P., 1969, Ecological chemistry, Sci. Am. 220: 22–29.Google Scholar
  20. Bullard, R. W., Schafer, E. W. Jr., and Bruggers, R. L., 1983, Tests of the enhancement of avian repellent chemicals with sensory cues, Proc. Vert. Pest Conf. 4: 66–75.Google Scholar
  21. Burgard, D. R., and Kuznicki, J. T., 1990, Chemometrics: Chemical and Sensory Data, CRC Press, New York.Google Scholar
  22. Callanan, D., Dixon, M., Widdicombe, J. G., and Wise, J. C. M., 1974, Responses of geese to inhalation of irritant gases and injection of phenyl diguanide, Respir. Physiol. 22: 157–166.Google Scholar
  23. Carpenter, S. E., and Lynn,B., 1981, Vascular and sensory responses of human skin to mild injury after topical treatment with capsaicin, Br. J. Pharmacol. 73: 755–758.PubMedGoogle Scholar
  24. Cheeke, P. R., 1976, Nutritional and physiological properties of saponins, Nutr. Rep. Int. 13: 315–324.Google Scholar
  25. Cheeke, P., 1989. Toxicants of Plant Origin, CRC Press, Boca Raton, Florida.Google Scholar
  26. Cipollini, M. L., and Levey, D. J., 1997, Why are some fruits toxic?: glycoalkaloids in Solanum and fruit choice by vertebrates, Ecology, in press.Google Scholar
  27. Clark L., 1991, The nest protection hypothesis: the adaptive use of plant secondary compounds by European Starlings, in: Bird—Parasite Interactions (J. E. Loye and M. Zuk, eds.), Oxford University Press, Oxford, pp. 205–221.Google Scholar
  28. Clark, L., 1995, Modulation of avian responsiveness to chemical irritants: effects of prostaglandin E1 and analgesics, J. Exp. Zool. 271: 432–440.Google Scholar
  29. Clark, L., 1996, Trigeminal repellents do not promote conditioned odor avoidance in European Starlings, Wilson Bull. 108: 36–52.Google Scholar
  30. Clark, L., 1997a, A review of the bird repellent effects of 117 carbocyclic compounds, in: Repellents in Wildlife Management (J. R. Mason, ed.), Colorado State University Press, Fort Collins, Colorado, in press.Google Scholar
  31. Clark, L., 1997b, Dermal contact repellents for starlings: foot exposure to natural plant products, J. Wildl. Manage. 61: 1352–1357.Google Scholar
  32. Clark, L., and Cummings, J., 1994, Field behavioral response and bead formulations for methyl anthranilate encapsulated bird repellents, in: Interagency Expanded Site Investigation: Evaluation of White Phosphorous Contamination and Potential Treat-ability at Eagle River Flats, Alaska (C. H. Racine and D. Cate, eds.), U.S. Army, Cold Regions Research Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, New Hampshire, pp. 281–294.Google Scholar
  33. Clark, L., and Cummings, J., 1995, Chemical hazing of free-ranging ducks in Eagle River Flats: field evaluation of ReJeX-iT WL-05, in: Interagency Expanded Site Investigation: Evaluation of White Phosphorous Contamination and Potential Treatability at Eagle River Flats, Alaska (C. H. Racine and D. Cate, eds.), U.S. Army, Cold Regions Research Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, New Hampshire, pp. 411–422.Google Scholar
  34. Clark, L., and Mason, J. R., 1987, Olfactory discrimination of plant volatiles by the European Starling, Anim. Behay. 35: 227–235.Google Scholar
  35. Clark, L., and Mason, J. R., 1993, Interaction between sensory and postingestional repellents in starlings: methyl anthranilate and sucrose, licol. Appl. 3: 262–270.Google Scholar
  36. Clark, L., and Mezine, I., 1997, Interaction of methyl anthranilate and agricultural adjuvants applied to cherries: consequences for bird repellency, in review.Google Scholar
  37. Clark, L., and Shah, P. S., 1991a, Nonlethal bird repellents: in search of a general model relating repellency and chemical structure, J. Wildl. Manage. 55: 538–545.Google Scholar
  38. Clark, L., and Shah, P. S., 1991b, Chemical bird repellents: applicability for deterring use of waste water, in: Issues and Technology in the Management of Impacted Wildlife ( S. Foster, ed.), Thorne Ecological Institute, Boulder, Colorado, pp. 157–164.Google Scholar
  39. Clark, L., and Shah, P. S., 1993, Chemical bird repellents: possible use in cyanide ponds, J. Wildl. Manage. 57: 657–664.Google Scholar
  40. Clark, L., and Shah, P., 1994, Tests and refinements of a general structure—activity model for avian repellents, J. Chem. licol. 20: 321–339.Google Scholar
  41. Clark, L., Mason, J. R., and Shah, P. S., 1991, Chemical repellency in birds: relationship between chemical structure and avoidance response, J. Exp. Zool. 260: 310–322.PubMedGoogle Scholar
  42. Clark, L., Avilova, K. V., and Bean, N. J., 1993, Odor thresholds in passerines, Comp. Biochem. Physiol. 104A: 305–312.Google Scholar
  43. Conover, M. R., 1995, Pitt, W. C., Kessler, K. K., DuBow, T. J., and Sanborn, W. M., 1995. Review of human injuries, illness, and economic losses caused by wildlife in the United States. Wildl. Soc. Bull. 23: 407–414.Google Scholar
  44. Crayton, S. C., Mitchell, J. H., and Payne, F. C., 1981, Reflex cardiovascular responses during injection of capsaicin into skeletal muscle, Am. J. Physiol. 240: H315 — H319.PubMedGoogle Scholar
  45. Crocker, D. R., and Perry, S. M., 1990, Plant chemistry and bird repellents, Ibis 132: 300–308.Google Scholar
  46. Crocker, D. R., Perry, S. M., Wilson, M., Bishop, J. D., and Scanlon, C. D., 1993, Repellency of cinnamic acid derivatives to captive rock doves, J. Wildl. Manage. 57: 113–122.Google Scholar
  47. Cummings, J. L., Mason, J. R., Otis, D. L., and Heisterberg, J. F., 1991, Evaluation of dimethyl and methyl anthranilate as a Canada Goose repellent on grass, Wildl. Soc. Bull. 19: 184–190.Google Scholar
  48. Cummings, J. L., Otis, D. L., and Davis, J. E., Jr., 1992, Dimethyl and methyl anthranilate and methiocarb deter feeding in captive Canada Geese and Mallards, J. Wildl. Manage. 56: 349–355.Google Scholar
  49. Cummings, J. L., Mason, J. R., Otis, D. L., Davis, J. E., and Ohashi, T. J., 1994, Evaluation of methiocarb, ziram, and methyl anthranilate as bird repellents applied to dendrobium orchids, Wildl. Soc. Bull. 22: 633–638.Google Scholar
  50. Cummings, J. L., Avery, M. L.,Pochop, P. A., Davis, J. E., Jr., and Decker, D. G., 1995a, Evaluation of a methyl anthranilate formulation for reducing bird damage to blueberries, Crop Prot. 14: 257–259.Google Scholar
  51. Cummings, J. L., Pochop, P. A., Davis, J. E., Jr., and Krupa, H. W., 1995b, Evaluation of ReJeX-iT AG-36 as a Canada Goose grazing repellent, J. Wildl. Manage. 59: 47–50.Google Scholar
  52. Curtis, P. D., et al., 1995, Merwin, I. A., Pritts, M. P., and Peterson, D. V., 1994. Chemical damage to sweet cherries, blueberries, and grapes. Hort. Sci. 29: 1151–1155.Google Scholar
  53. Czirr, S. A., and Reid, L. D., 1986, Demonstrating morphine’s potentiating effects on sucrose intake, Brain Bes. Bull. 17: 639–642.Google Scholar
  54. Dolbeer, R. A., Clark, L., Woronecki, P. P., and Seamans, T. W., 1992, Pen tests of methyl anthranilate as a bird repellent in water, East. Wild). Damage Control Conf. 5: 112–116.Google Scholar
  55. Dolbeer, R. A., Belant, J. L., and Clark, L., 1993, Methyl anthranilate formulations to repel birds from water at airports and food at landfills, Great Plains Wildl. Damage Control Workshop 11: 42–53.Google Scholar
  56. Dolbeer, R. A., Avery, M. L., and Tobin, M. E., 1994, Assessment of field hazards to birds from methiocarb applications to fruit crops, Pestic. Sci. 40: 147–161.Google Scholar
  57. Dubbeldam, J. L., and Karten, H. J., 1978, The trigeminal system in the pigeon (Columba livia). I. Projections of the Gasserian ganglion, J. Comp. Neurol. 180: 661.Google Scholar
  58. Dubbeldam, J. L., and Veenman, C. L., 1978, Studies on the somatotopy of the trigeminal system in the Mallard, Anas platyrhynchos L: The ganglion trigeminale, Neth. J. Zool. 28: 150–160.Google Scholar
  59. Duke, J. A., 1987, Handbook of Medicinal Herbs, C.C Press, Boca Raton, Florida. Duncan, C. J., 1960, Preference tests and the sense of taste in the feral pigeon, Anim. Behay. 8: 54–60.Google Scholar
  60. Engelmann, C., 1934, Versuche über den Geschmackssinn von Taube, Ente und Huhn, Z. Vergl. Physiol. 1934: 626–645.Google Scholar
  61. Evans, D. D., 1985, Distinguishing between conditioned taste aversion, anorexia and taste aversion as the cause of decreased food consumption in caged Zebra Finches ingesting azodrin or nufarm Iv ester 40, Bird Behay. 6: 16–22.Google Scholar
  62. Fatino, M. J., Hosotte, J., and Apfelbaum, M., 1986, An opiate antagonist, naltrexone reduces preference for sucrose in humans, Am. J. Phsyiol. 251: R91–96.Google Scholar
  63. Ferreira, S. H., 1972, Prostaglandins, aspirin-like drugs and analgesia, Nature 240:200. Fields, H. C., 1987, Pain, McGraw-Hill, N.Y.Google Scholar
  64. Fitzgerald, M., 1983, Capsaicin and sensory neurones—a review, Pain 15: 109–130.PubMedGoogle Scholar
  65. Fitzgerald, M., and Woolf, C. J., 1982, The time course and specificity of the changes in the behavioural and dorsal horn responses to noxious stimuli following peripheralGoogle Scholar
  66. nerve capsaicin treatment in the rat, Neuroscience (Oxford) 7:2051–2056.Google Scholar
  67. Furia, E. E., and Bellanca, N., 1975, Fenaroli’s Handbook of Flavor Ingredients, CRC Press, Cleveland, Ohio.Google Scholar
  68. Gamse, R., Molnar, A., and Lembeck, F., 1979, Substance P release from spinal cord slices by capsaicin, Life Sci. 25: 629–636.PubMedGoogle Scholar
  69. Gamse, R., Pesche, U., Lembeck, F., and Jancso, G., 1982, Capsaicin applied to peripheral nerve inhibits axoplasmic transport of substance P and somatostatin, Brain Res. 239: 447–462.Google Scholar
  70. Garcia, J. R., Kovner, R., and Green, K. F., 1966, Cue properties vs. palatability of flavors in avoidance learning, Psychonomic Sci. 20: 313–314.Google Scholar
  71. Geisthövel, E., Ludwig, O., and Simon, E., 1986. Capsaicin fails to produce disturbances of autonomic heat and cold defense in an avian species (Anas platyrhynchos). Pfluegers Arch. 406: 343–350.Google Scholar
  72. Gentle, M. J., 1975, Gustatory behaviour of the chicken and other birds, in: Neural and Endocrine Aspects of Behaviour in Birds ( P. Wright and P. G. Caryl, eds.), Elsevier, Amsterdam, pp. 305–318.Google Scholar
  73. Gentle, M. J., 1989, Cutaneous sensory afferents recorded from the nervus intramandibularis of Gallus gallus var domesticus, J. Comp. Physiol. A 164: 763–774.PubMedGoogle Scholar
  74. Gentle, M. J., and Hill, F. L., 1987, Oral lesions in the chicken: behavioural responses following nociceptive stimulation, Physiol. Behay. 40: 781–783.Google Scholar
  75. Gentle, M. J., and Hunter, L. N., 1993, Neurogenic inflammation in the chicken (Gallus gallus var domesticus), Comp. Biochem. Physiol. 105C: 459–462.Google Scholar
  76. Getty, R., 1975, The Anatomy of the Domestic Animals, Saunders, Philadelphia. Glahn, J. F., Mason, J. R., and Woods, D. R., 1989, Dimethyl anthranilate as a bird repellent in livestock feed, Wildl. Soc. Bull. 17: 313–320.Google Scholar
  77. Glendenning, J. J., 1994, Is the bitter rejection response always adaptive? Physiol. Behay. 56: 1217–1227.Google Scholar
  78. Gottschaldt, K. M., 1985, Structure and function of avian somatosensory receptors, in: Form and Function in Birds, Volume 3 ( A. S. King and J. McLelland, eds.), Academic Press, London, pp. 375–462.Google Scholar
  79. Green, B. G., 1990, Effects of thermal, mechanical, and chemical stimulation on the perception of oral irritation, in: Chemical Senses, Vol. 2, Irritation ( B. G. Green, J. R. Mason, and M. R. Kare, eds.), Marcel Dekker, New York, pp. 171–192.Google Scholar
  80. Guilford, T., 1987, The biological role of pyrazines: evidence for a warning odour function, Biol. J. Linn. Soc. 31: 113–128.Google Scholar
  81. Henton, W. W., 1969, Conditioned suppression to odorous stimuli in pigeons, J. Exp. Anal. Behay. 12: 175–185.Google Scholar
  82. Henton, W. W., Smith, J. C., and Tucker, D., 1966, Odor discrimination in pigeons, Science 153: 1138–1139.PubMedGoogle Scholar
  83. Herrera, C. M., 1987, Vertebrate dispersed plants of the Iberian Peninsula: a study of fruit characteristics, Ecol. Monogr. 57: 305–331.Google Scholar
  84. Hiestand, W. A., and Randall, W. C., 1941, Species differentiation in the respiration of birds following carbon dioxide administration and the location of inhibitory receptors in the upper respiratory tract, J. Cell. Comp. Physiol. 17: 333–340.Google Scholar
  85. Hygnstrom, S. E., Timm, R. M., and Larson. G. E., 1994, Prevention and Control of Wildlife Damage, University of Nebraska Cooperative Extension, United States Department of Agriculture, Washington, D.C.Google Scholar
  86. Jakubas, W. J., and Mason, J. R., 1991, Role of avian trigeminal sensory system in detecting coniferyl benzoate, a plant allelochemical, J. Chem. Ecol. 17: 2213–2221.Google Scholar
  87. Jakubas, W. J., Shah, P. S., Mason, J. R., and Norman, D. M., 1992, Avian repellency of coniferyl and cinnamyl derivatives, Ecol. Appl. 2: 147–156.Google Scholar
  88. Jancso, G., Kiraly, E., and Jancso-Gabor, A. 1980, Direct evidence for an axonal site of action of capsaicin, Naunyn-Schmiedebersg’s Arch. Pharmacol. 313: 91–94.Google Scholar
  89. Jancso, N., Jancso-Gabor, A., and Szolcsanyi, J., 1967, Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin, Br. J. Pharmacol. 31: 138–151.Google Scholar
  90. Jessell, T. M., and Kelly, D. D., 1991, Pain and analgesia, in: Principles of Neural Science, 3rd ed. ( E. R. Kandel, J. H. Schwartz, and T. M. Jessell, eds.), Elsevier, New York, pp. 385–399.Google Scholar
  91. Kare, M. R., 1961, U.S. Patent, Bird Repellents, 2, 967, 128.Google Scholar
  92. Kare, M. R., and Brand, J. G., 1986, Interaction of the Chemical Senses with Nutrition, Academic Press, New York.Google Scholar
  93. Kare, M. R., and Ficken, M. S., 1963, Comparative studies on the sense of taste, in: Olfaction and Taste ( Y. Zotterman, ed.), Pergamon Press, London, 285–298.Google Scholar
  94. Kare, M. R., and Rogers, J. G., 1976, Sense organs. Taste. in: Avian Physiology ( P. D.Sturkie, ed.), Springer-Verlag, Berlin.Google Scholar
  95. Keele, C. A., 1962, The common chemical sense and its receptors, Arch. Int. Pharmacodyn. Ther. 139: 547–557.PubMedGoogle Scholar
  96. Keverne, E. B., Murphy, C. L., Silver, W. L., Wysocki, C. J., and Meredith, M., 1986, Non-olfactory chemoreceptors of the nose: recent advances in understanding the vomeronasal and trigeminal systems, Chem. Senses 11: 119–133.Google Scholar
  97. Kitchell, R. L., and Erickson, H. H., 1983, eds., Animal Pain, Perception and Alleviation, Amererican Physiological Society, Bethesda, Maryland.Google Scholar
  98. Kitchell, R. L., Stom, L., and Zotterman Y., 1959, Electrophysiological studies of thermal and taste reception in chickens and pigeons, Acta Physiol. Scand. 46: 133–151.Google Scholar
  99. Kotwani, A., Mehta,V. L., and lyengar B., 1994, Mechanism of aspirin induced neural tube defect in chick embryo, Indian J. Med. Res. 99: 289–294.Google Scholar
  100. Kruger, L., and Rodin, B. E., 1983, Peripheral mechanisms involved in pain, in: Animal Pain, Perception, and Alleviation ( R. L. Kitchell, and H. H. Erikson, eds.), American Physiological Society, Bethesda, Maryland, pp. 1–26.Google Scholar
  101. Landolt, J. P., 1970, Neural properties of pigeon lingual chemoreceptors, Physiol. Behay. 5: 1151–1160.Google Scholar
  102. Lee-Teng, E., 1969, Retrograde amnesia in relation to subconvulsive and convulsive currents in chicks, J. Comp. Psycho]. 67: 135–139.Google Scholar
  103. Lee-Teng, E., and Sherman, S. M., 1966, Memory consolidation of one-trial learning in chicks, Proc. Natl. Acad. Sci. USA 56: 926–931.PubMedGoogle Scholar
  104. Lee-Teng, E., and Sherman, S. M., 1969, Effect of forebrain lesions on acquisition and retention of one-trail learning in chicks, Proc. 77th Annu. Convention APA 1969: 203–204.Google Scholar
  105. Le Magnen, J. P., 1992, Neurobiology of Feeding and Nutrition, Academic Press, San Diego, California.Google Scholar
  106. Lembeck, F., and Ganse, R., 1982, Substance P in peripheral sensory processes. CIBA Foundation Symposium 91: 34–54.Google Scholar
  107. Lipkowitz, K. B., and Boyd, D. B., 1990, Reviews in Computational Chemistry, VCH Publishers, New York.Google Scholar
  108. Macari, M., Rurlan, R. L., Gregorut, F. P., Secato, E. R., and Guerreiro, J. R., 1993, Effects of endotoxin, interluekin-1-beta and prostaglandin injections on fever response in broilers, Br. Poult. Sci. 34: 1035–1042.PubMedGoogle Scholar
  109. Maggi, C. A., Patacchini, R., Tramontana, M., Amann, R., Giuliani, S., and Santiciol P. 1., 1990, Similarities and differences in the action of resiniferatoxin and capsaicin on central and peripheral endings of primary sensory neurons, Neuroscience 37: 531–539.PubMedGoogle Scholar
  110. Mark, R. F., and Watts, M. E., 1971, Drug inhibition of memory formation in chickens. 1. long-term memory, Proc. R. Soc. B 178: 439–454.Google Scholar
  111. Mason, J. R., 1989, Avoidance of methiocarb-poisoned apples by Red-winged Blackbirds, J. Wildl. Manage. 53: 836–840.Google Scholar
  112. Mason, J. R., 1990, Evaluation of pulegone as an avian repellent, J. Wildl. Manage. 54: 130–135.Google Scholar
  113. Mason, J. R., and Bonwell, W. R., 1993, Evaluation of turpentine as a bird-repellent seed treatment, Crop Prot. 12: 453–457.Google Scholar
  114. Mason, J. R., and Clark, L., 1987, Dimethyl anthranilate repellency to reduce grazing by Canada Geese Brunk! canadensis, Denver Wildl. Res. Center Rep. 38: 1–11.Google Scholar
  115. Mason, J. R., and Clark, L., 1992, Nonlethal repellents: the development of cost-effective, practical solutions to agricultural and industrial problems, Proc. Vert. Pest Conf. 15: 115–129.Google Scholar
  116. Mason, J. R., and Clark, L., 1995a, Capsaicin detection in trained European Starlings: the importance of olfaction and trigeminal chemoreception, Wilson Bull. 107: 165–169.Google Scholar
  117. Mason, J. R., and Clark, L., 19956, Mammalian irritants as chemical stimuli for birds: the importance of training, Auk 112: 511–514.Google Scholar
  118. Mason, J. R., and Clark, L., 1995c, Evaluation of methyl anthranilate and activated charcoal as Snow Goose grazing deterrents, Crop. Prot. 14: 467–469.Google Scholar
  119. Mason, J. R., and Clark, L., 1996a, Grazing repellency of methyl anthranilate to Snow Geese is enhanced by a visual cue, Crop Prot. 15: 97–100.Google Scholar
  120. Mason, J. R., and Clark, L., 19961), Avoidance of cabbage fields by Snow Geese, Wilson Bull. 108: 369–371.Google Scholar
  121. Mason, J. R., and Maruniak, J. A., 1983, Behavioral and physiological effects of capsaicin in Red-winged Blackbirds, Phormacol. Biochem. Behay. 19: 857–862.Google Scholar
  122. Mason, J. R., and Otis, D. L., 1990, Effectiveness of six potential irritants on consumption by Red-winged Blackbirds (Agelaius phoeniceus) and starlings (Sturnus vulgaris), in: Chemical Senses, Vol. 2, Irritation ( B. G. Green, J. R. Mason, and M. R. Kare, eds.), Marcel Dekker, New York, pp. 309–322.Google Scholar
  123. Mason, J. R., and Reidinger, R. F., 1983, Importance of color for methiocarb food aversions in Red-winged Blackbirds, J. Wild. Manage. 47: 383–393.Google Scholar
  124. Mason, J. R., and Silver, W. L., 1983, Trigeminally mediated odor aversions in starlings, Brain Res. 269: 196–199.PubMedGoogle Scholar
  125. Mason, J. R., and Turpin, T., 1990, Cucurbitacin-adulterated diet is avoid by captive European Starlings, J. Wildl. Manage. 54: 672–676.Google Scholar
  126. Mason, J. R., Glahn, J. F., Dolbeer, R. A., and Reidinger, R. F., 1985, Field evaluation of dimethyl anthranilate as a bird repellent livestock feed additive, J. Wildl. Manage. 49: 636–642.Google Scholar
  127. Mason, J. R., Adams, M. A., and Clark, L., 1989, Anthranilate repellency to starlings: chemical correlates and sensory perception, J. Wildl. Manage. 53: 55–64.Google Scholar
  128. Mason, J. R., Avery, M. L., Glahn, J. F., Otis, D. L., Matteson, R. E., and Nelms, C. O., 1991a, Evaluation of methyl anthranilate and starch-plated dimethyl anthranilate as bird repellent feed additives, J. Wildl. Manage. 55: 182–187.Google Scholar
  129. Mason, J. R., Bean, N. J., Shah, P. S., and Clark, L., 1991b, Taxon-specific differences in responsiveness to capsaicin and several analogues: correlates between chemical structure and behavioral aversiveness, J. Chem. Ecol. 17: 2539–2551.Google Scholar
  130. Mason, J. R., Clark, L., and Shah, P. S., 1991c, Ortho-amino acetophenone repellency to birds: similarities to methyl anthranilate, J. Wildl. Manage. 55: 334–340.Google Scholar
  131. Mason, J. R., Neal, J. Oliver, J. E., and Lusby, W. R., 1991d, Bird-repellent properties of secretions from nymphs of the azalea lace bug, Ecol. Appl. 1: 226–230.Google Scholar
  132. Mason, J. R., Clark, L., and Shah, P. S., 1992, Taxonomic differences between birds and mammals in their responses to chemical irritants, in: Chemical Signals in Vertebrates, Volume VI ( R. Doty and D. Muller-Schwarze, eds.). Plenum Press, New York, pp. 291–296.Google Scholar
  133. Mattocks, A. R., 1986, Chemistry and Toxicity of Pyrrolizidine Alkaloids, Academic Press, New York.Google Scholar
  134. McElroy, A. P., Manning, J. G., Jaeger, L. A., Taub, M., Williams, J. D., Hargis, B. M., 1994, Effect of prolonged administration of dietary capsaicin on broiler growth and Salmonella enteritidis susceptibility, Avian Dis. 38: 329–333.PubMedGoogle Scholar
  135. Mehler, W. R., 1957, The mammalian “pain tract” in phylogeny, Anat. Rec. 127:332. Mehler, W. R., 1969, Some neurological species differences—a posteriori, Ann. N. Y Acad. Sci. 167: 424–468.Google Scholar
  136. Melzack, R. 1973, The Puzzle of Pain,Basic Books, New York.Google Scholar
  137. Melzack, R., and Casey, K. L., 1968, Sensory, motivational, and central control determinants of pain: a new conceptual model, in: The Skin Senses ( D. Denshalo, ed.), Thomas, Springfield, Illinois, pp. 423–443.Google Scholar
  138. Mercer, M. E., and Hoder, M. D., 1997, Antinociceptive effects of palatable sweet ingesta on human responsivity to pressure pain, Physiol. Behay. 61: 311–318.Google Scholar
  139. Michelsen, W. J., 1959, Procedure for studying olfactory discrimination in pigeons, Science 130: 630–631.PubMedGoogle Scholar
  140. Necker, R., 1974, Temperature sensitivity of slowly adapting mechanoreceptors in the beaks of pigeons, in: Symposium Mechanoreception, Bochum, 1973 (J. Schwarzkopff, ed.), Westdeutscher Verlag, Opladen, Germany.Google Scholar
  141. Nelson, R. R., Acree, T. E., Lee, C. Y., and Butts, R. M., 1977, Methyl anthranilate as an aroma constituent of American wine. J. Food Sci. 42: 57–59.Google Scholar
  142. Nielsen, G. D., 1991, Mechanisms of activation of the sensory irritant receptor by airborne chemicals, Crit. Rev. Toxicol. 21: 183–208.Google Scholar
  143. Norman, D. M., Mason, J. R., and Clark, L., 1992, Capsaicin effects on consumption of food by Cedar Waxwings and House Finches, Wilson Bull. 104: 549–551.Google Scholar
  144. Palmerino, C. C., Rusiniak, K. W., and Garcia, J.. 1980, Flavor-illness aversions: the peculiar roles of odor and taste in memory for poison, Science 208: 753–755.PubMedGoogle Scholar
  145. Parker, G. H., 1912, The relation of smell, taste and the common chemicals sense in vertebrates, J. Acad. Natl. Sci. Ser. 2, 15: 221–234.Google Scholar
  146. Pelchat, M. L., Grill, H. J., Rozin, P., and Jacobs, J., 1983, Quality of acquired responses to tastes by Battus norvegicus depends on type of associated discomfort, J. Comp. Psycho). 97: 140–153.Google Scholar
  147. Pierau, F.-K., Gamse, R., Harti, G., Sann, H., and Szolcsanyi, J., 1985, Resistance of pigeons to capsaicin is the consequence of differences in their substance P (SP) system, Neurosci. Lett. Suppl. 22: S462.Google Scholar
  148. Pierau, F.-K., Szolcsanyi, J., and Sann, H., 1986, The effect of capsaicin on afferent nerves and temperature regulation of mammals and birds, J. Thermal Biol. 11: 95–100.Google Scholar
  149. Rensch, B., and Neunzing, R., 1925, Experimentelle Untersuchungen über den Geschmackssinn der Vögel II, J. Ornithol. 73: 633–646.Google Scholar
  150. Riley, A. L., and Tuck, D. L., 1985, Conditioned taste aversions: a behavioral index of toxicity, Ann. N. Y. Acad. Sci. 443: 272–292.PubMedGoogle Scholar
  151. Rogers, J. G., Jr., 1974, Responses of caged Red-winged Blackbirds to two types of repellents, J. Wild. Manage. 38: 418–424.Google Scholar
  152. Rozin, P., 1990, Getting to like the burn of chili pepper: biological, psychological, and cultural perspectives, in: Chemical Senses, Vol. 2, Irritation ( B. G. Green, J. R. Mason, and M. R. Kare, eds.), Marcel Dekker, New York, pp. 231–270.Google Scholar
  153. Salzen, E., and Parker, D. M., 1975, Arousal and orientation functions of the avian telencephalon, in: Neural and Endocrine Aspects of Behaviour in Birds ( P. Wright, P. Caryl, and D. M. Vowles, eds.), Elsevier, Amsterdam, pp. 205–242.Google Scholar
  154. Sann, H., Harti, G., Pierau, F.-K., and Simon, E., 1987, Effect of capsaicin upon afferent and efferent mechanisms of nociception and temperature regulation in birds, Can. J. Physiol. Pharmacol. 65: 1347–1354.PubMedGoogle Scholar
  155. Schafer, E. W., Jr., Bowles, W. A., Jr., and Hurlbut, J., 1983, The acute oral toxicity, repellency, and hazard potential of 998 chemicals to one or more species of wild and domestic birds, Arch. Environ. Contam. Toxicol. 12: 355–382.Google Scholar
  156. Schrader, E., 1970, Die Topographie der Kopfnerven vom Huhn, Inaug. Diss., Freien Universität Berlin.Google Scholar
  157. Schuler, W., 1983, Responses to sugars and their behavioural mechanisms in the starling (Sturnus vulgaris L.), Behay. Ecol. Sociobiol. 13: 243–251.Google Scholar
  158. Shah, P. S., Clark, L., and Mason, J. R., 1991, Prediction of avian repellency from chemical structure: the aversiveness of vanillin, vanillyl alcohol, and veratryl alcohol, Pestic. Physiol. Biochem. 40: 169–175.Google Scholar
  159. Shah, P. S., Mason, J. R., and Clark, L., 1992, Avian chemical repellency: a structure—activity approach and implications, in: Chemical Signals in Vertebrates, VI ( R. L. Doty and D. Muller-Schwarze, eds.), Plenum Press, New York, pp. 291–296.Google Scholar
  160. Silver, W. L., and Maruniak, J. A., 1980, Trigeminal chemoreception in the nasal and oral cavities, Chem. Senses 6: 295–305.Google Scholar
  161. Silver, W. L., Mason, J. R., Marshall, D. A., and Maruniak, J. A., 1985, Rat trigeminal, olfactory and taste responses after capsaicin desensitization, Brain Res. 333: 45–54.Google Scholar
  162. Soudek, S., 1929, The sense of smell in the birds, Proc. Int. Congr. Zool. 10: 755.Google Scholar
  163. Szallasi, A., and Blumberg, P. M., 1989, Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper, Neuroscience 30: 515–520.PubMedGoogle Scholar
  164. Szolcsanyi, J., 1977, A pharmacological approach to elucidation of the role of different nerve fibers and receptor endings in mediation of pain, J. Physiol. (Paris) 73: 251–259.Google Scholar
  165. Szolcsanyi, J., 1984, Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function, in: Neurogenic Inflammation and Antidromic Vasodilation ( L. A. Chahl, J. Szolcsanyi, and F. Lembeck, eds.), Akademia Kiado, Budapest, pp. 27–55.Google Scholar
  166. Szolcsanyi, J., 1985, Sensory receptors and the antinociceptive effects of capsaicin, in: ‘Iâchykinin Antagonists ( R. Hakanson and F. Sundler, eds.), Elsevier, Amsterdam, pp. 45–54.Google Scholar
  167. Szolcsanyi, J., 1988, Antidromic vasodilation and neurogenic inflammation, Agents Action 23: 4–11.Google Scholar
  168. Szolcsanyi, J., 1990, Capsaicin, irritation, and desensitization: neurophysiological basis and future perspectives, In: Chemical Senses, Vol. 2, Irritation ( B. G. Green, J. R. Mason, and M. R. Kare, eds.), Marcel Dekker, New York, pp. 141–168.Google Scholar
  169. Szolcsanyi, J., and Jancso-Gabor, A., 1973, Capsaicin and other pungent agents as pharmacological tools in studies on thermoregulation, Pharmacol. Thermoregul. 1973: 395–409.Google Scholar
  170. Szolcsanyi, J., Sebok, B., and Bartho, L., 1985, Capsaicin, sensation and flare reaction: the concept of bidirectional axon reflex, in: Substance P Metabolism and Biological Actions ( C. C. Jorclan,and P. Oehme, eds.), Taylor and Francis, London. pp. 106–111.Google Scholar
  171. Szolcsanyi, J., Sann, H., and Pierau, F.-K., 1986, Nociception in pigeons is not impaired by capsaicin, Pain 27: 247–260.PubMedGoogle Scholar
  172. Tellez, G. I., Jaeger, L., Dean, C. E., Cornier, D. E., DeLoach, J. R., Williams, J. D., and Hargis, B. M., 1993, Effect of prolonged administration of dietary capsaicin on Salmonella enteritidis infection in Leghorn chicks, Avian Dis. 37: 143–148.PubMedGoogle Scholar
  173. Terenius, L., 1987, Pain, chemical transmitter concepts, in. Encyclopedia of Neuroscience (G. Adelman, ed.), Birkhauser, Boston, pp. 901–903.Google Scholar
  174. Thompson, W. T., 1988, Agricultural Chemicals, Book I II, Miscellaneous Chemicals, Thompson Publications, Fresno, California.Google Scholar
  175. Toth-Kasa, I., Jancso, G., Bognar, A., Husz, S., and Obal, F., Jr., 1986, Capsaicin prevents histamine-induced itching, Int. J. Clin. Pharm. Res. 6: 163–169.Google Scholar
  176. Tucker, D., 1963, Olfactory, vomeronasal and trigeminal receptor responses to odorants, in: Olfaction and Taste ( Y. Zotterman, ed.), Pergamon Press, New York, pp. 45–69.Google Scholar
  177. Tucker, D., 1971, Nonolfactory responses from the nasal cavity: Jacobson’s organ and the trigeminal system, in: Handbook of Sensory Physiology, Vol. 4, Chemical Senses, Part 1, Olfaction ( L. M. Beidler, ed.), Springer-Verlag, Berlin, pp. 151–181.Google Scholar
  178. Vogt, D. F., et al., 1994, Naentman, T., and Clark, L., 1994, Rejex-T’“ bird aversion agents: the control of gulls at landfills. Bird Strike Committee Report Europe. pp. 1–11.Google Scholar
  179. Walcott, C., 1996, Pigeon homing: observations, experiments and confusions, J. Exp. Biol. 199: 21–27.PubMedGoogle Scholar
  180. Waldvogel, J. A., 1989, Olfactory orientation by birds, in: Current Ornithology, Vol. 6 ( D. M. Power, ed.), Plenum Press, New York, pp. 369–379.Google Scholar
  181. Walker, J. C., Tucker, D., and Smith, J. C., 1979, Odor sensitivity mediated by the trigeminal nerve in the pigeon, Chem. Senses Flay. 1979: 107–116.Google Scholar
  182. Walker, J. C., Walker, D. B., Tambiah, C. R., and Gilmore, K. S., 1986, Olfactory and nonolfactory odor detection in pigeons: elucidation by a cardiac acceleration paradigm, Physiol. Behay. 38: 575–580.Google Scholar
  183. Wallraff, H. G., 1991, Conceptual approaches to avian navigation systems, in: Orientation in Birds ( P. Berthold, ed.), Birkhauser, Basel, pp. 128–165.Google Scholar
  184. Watkins, R. W., Gill, E. L., and Bishop, J. D., 1995, Evaluation of cinnamamide as an avian repellent: determination of a dose—response curve, Pestic. Sci. 44: 335–340.Google Scholar
  185. Watts, M. E., and Mark, R. F., 1971, Drug inhibition of memory formation in chickens. 2. short-term memory, Proc. R. Soc. B 178: 455–464.Google Scholar
  186. Wenzel, B. M., 1968, The olfactory prowess of the kiwi, Nature 220:1133–1134. 195–225.Google Scholar
  187. Wenzel, B. M., 1973, Chemoreception, in: Avian Biology, Vol. III ( D. S. Fanner and J. R. King, eds.), Academic Press, New York.Google Scholar
  188. Wenzel, B. M., 1974, The olfactory system and behavior, in: Limbic and Autonomic Nervous Systems Research ( L. V. DiCara, ed.), Plenum Press, New York, pp. 1–40.Google Scholar
  189. Wenzel, B. M., and Salzman, A., 1968, Olfactory bulb ablation or nerve section and pigeons’ behavior in non-olfactory learning, Exp. Neural. 22: 472.Google Scholar
  190. Willis, W. D., Jr., 1983, Ascending pathways transmitting nociceptive information in animals, in: Animal Pain, Perception and Alleviation ( R. L. Kitchell and H. H. Erickson, eds.), American Physiological Society, I3ethesda, Maryland. pp. 41–62.Google Scholar
  191. Willson, M. F., and Hoppes, W. G., 1986, Foliar ‘flags’ for avian frugivores: signal or serendipity? in: Frugivores and Seed Dispersal ( A. Estrada and T. H. Fleming, eds.), W. Junk, Boston, pp. 55–69.Google Scholar
  192. Willson, M. F., and Thompson, J. N., 1982, Phenology and ecology of color in bird dispersed fruits, or why some fruits are red when they are ‘green,’ Can. J. Bot. 60: 701–713.Google Scholar
  193. Woolley, S. C., and Gentle, M. J., 1987, Physiological and behavioural responses in the hen (Gallus domesticus) to nociceptive stimulation, Comp. Biochem. Physiol. 88A: 27–31.Google Scholar
  194. Zahorik, D. M., 1976, Associative and non-associative factors in learned food preferences, in: Learning Mechanisms in Food Selection ( L. M. Best, M. R. Barker, and M. Dom-jan, eds.), Baylor University Press, Waco, Texas, pp. 181–200.Google Scholar
  195. Zeigler, H. P., 1973, Trigeminal deafferentation and feeding in the pigeon: sensorimotor and motivational effects, Science 182: 1155–1158.PubMedGoogle Scholar
  196. Zeigler, H. P., and Witkovsky P., 1968, The main sensory trigeminal nucleus in the pigeon: a single-unit analysis, J. Comp. Neurol. 134: 255–264.PubMedGoogle Scholar
  197. Zeigler, H. P., Green, H. C., and Karten, H. J., 1969, Neural control of feeding behavior in the pigeon, Psychonom. Sci. 15: 156–157.Google Scholar
  198. Zeigler, H. P., Miller, M.,, and Levine, R. R., 1975, Trigeminal nerve and eating in the pigeon, J. Comp. Physiol. Psychol. 89: 845–858.Google Scholar
  199. Zweers, G. A., Gerritsen, A. F. C., and van Kranenburg-Voogd, P. J., 1977, Mechanics of feeding in the Mallard (Anas platyrhynchos), in: Contributions to Vertebrate Evolution, Vol. 3 (M. K Hecht and F. S. Szalay eds.), Karger, Basel. pp. ix-109.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Larry Clark
    • 1
  1. 1.United States Department of Agriculture, Animal and Health Inspection Service, Animal Damage ControlNational Wildlife Research CenterFort CollinsUSA

Personalised recommendations