Advertisement

Role of Chromosomal Banding Patterns in Understanding Mammalian Evolution

  • Robert J. Baker
  • Mazin B. Qumsiyeh
  • Craig S. Hood

Abstract

Understanding and elucidating the forces affecting chromosomal evolution is not a simple task and is by no means nearing completion. A major obstacle is documenting the exact time of fixation of a new chromosomal rearrangement in a natural population. Currently, it is not possible to determine at what point in its past a chromosomal rearrangement became established in the karyotype of a species. Therefore, we can only speculate on the circumstances surrounding fixation of a rearrangement in a single population that subsequently becomes characteristic of the entire species. An even more basic example is the lack of documentation that individuals with a new chromosomal rearrangement are more fit than individuals with the primitive condition. A list of the features of chromosomal evolution that have not been observed is long enough to suggest a huge gap between theoretical and empirical studies.

Keywords

Centric Fusion Chromosomal Evolution Pericentric Inversion Chromosomal Variation Pocket Gopher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnason, V., 1974, Comparative chromosome studies in Cetacea, Hereditas 77:1–36.PubMedGoogle Scholar
  2. Baker, R. J., 1979, Karyology, in: Biology of Bats of the New World Family Phyllostomatidae, Vol. 16 (R. J. Baker, J. K. Jones, Jr., and D. C. Carter, eds.), Special Publication, The Museum, Texas Tech University, Lubbock, Texas, pp. 107–155.Google Scholar
  3. Baker, R. J., 1981, Chromosome flow between chromosomally characterized taxa of a volant mammal, Uroderma bilobatum, Evolution 35:296–305.Google Scholar
  4. Baker, R. J., 1984, A sympatric cryptic species of mammal: A new species of Rhogeessa (Chiroptera: Vespertilionidae), Syst. Zool. 33:178–183.Google Scholar
  5. Baker, R. J., and Barnett, R. K., 1981, Karyotypic orthoselection for additions of heterochromatic short arms in grasshopper mice (Onychomys: Cricetidae), Southwest. Nat. 26:125–131.Google Scholar
  6. Baker, R. J., and Bass, R. A., 1979, Evolutionary relationships of the Brachyphyllinae to the glossophagine genera Glossophaga and Monophyllus, J. Mammal. 60:364–372.Google Scholar
  7. Baker, R. J., and Bickham, J. W., 1980, Karyotypic evolution in bats: Evidence of extensive and conservative chromosomal evolution in closely related taxa, Syst. Zool. 29:239–251.Google Scholar
  8. Baker, R. J., and Bickham, J. W., 1984, Karyotypic megaevolution by any other name: A response to Marks, Syst. Zool. 33:339–341.Google Scholar
  9. Baker, R. J., and Bickham, J. W., 1986, Speciation by monobrachial centric fusions, Proc. Natl. Acad. Sci. USA 83:8245–8248.PubMedGoogle Scholar
  10. Baker, R. J., Barnett, R. K., and Greenbaum, I. F., 1979, Chromosomal evolution in grasshopper mice (Onychomys: Cricetidae), J. Mammal. 60:297–306.Google Scholar
  11. Baker, R. J., Haiduk, M. W., Robbins, L. W., Cadena, A., and Koop, B. F., 1982, Chromosomal studies of South American bats and their systematic implications, in: Mammalian Biology in South America, Volume 4 (M. A. Mares and H. H. Genoways, eds.), Special Publication Series, Pymatuning Laboratory of Ecology, University of Pittsburgh, Linesville, Penn., pp. 303–327.Google Scholar
  12. Baker, R. J., Chesser, R. K., Koop, B. F., and Hoyt, R. A., 1983a, Adaptive nature of chromosomal rearrangements: Differential fitness in pocket gophers, Genetica 61: 161–164.Google Scholar
  13. Baker, R. J., Koop, B. F., and Haiduk, M. W., 1983b, Resolving systematic relationships with G-bands: A study of five genera of South American cricetine rodents, Syst. Zool. 32:403–416.Google Scholar
  14. Baker, R. J., Robbins, L. W., Stangl, F. B., Jr., and Birney, E. C, 1983c, Chromosomal evidence for a major subdivision in Peromyscus leucopus, J. Mammal. 64:356–359.Google Scholar
  15. Baker, R. J., Bickham, J. W., and Arnold, M. L., 1985, Chromosomal evolution in Rhogeessa (Chiroptera: Vespertilionidae): Possible speciation by centric fusions, Evolution 39: 233–243.Google Scholar
  16. Baker, R. J., Qumsiyeh, M. B., and Rautenbach, J. L., 1986, Evidence for eight tandem fusions in the evolution of the karyotype of Aethomys namequensis A. Smith, Genetica, in press.Google Scholar
  17. Baverstock, P. R., Watts, C. H. S., Adams, M., and Gelder, M., 1980, Chromosomal and electrophoretic studies of Australian Melomys (Rodentia: Muridae), Aust. J. Zool. 28:553–574.Google Scholar
  18. Baverstock, P. R., Gelder, M., and Jahnke, A., 1982, Chromosome evolution in Australian Rattus—G-banding and hybrid meiosis, Genetica 60:93–103.Google Scholar
  19. Baverstock, P. R., Watts, C. H. S., Gelder, M., and Jahnke, A., 1983, G-banding homologies of some Australian rodents, Genetica 60:105–117.Google Scholar
  20. Bengtsson, B. O., 1980, Rates of karyotype evolution in placental mammals, Hereditas 92:37–47.PubMedGoogle Scholar
  21. Bennett, M. D., 1982, Nucleotypic basis for the spacial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation, in: Genomic Evolution (G. A. Dover and R. B. Flavell, eds.), Academic Press, London, pp. 239–261.Google Scholar
  22. Bianchi, N. O., and Merani, S., 1984, Cytogenetics of South American akodont rodents (Cricetidae). X. Karyological distances at generic and intergeneric levels, J. Mammal. 65:206–219.Google Scholar
  23. Bianchi, N. O., Vidal Rioja, L., and Bianchi, M. S. A., 1976, Cytogenetics of the South American akodont rodents (Cricetidae). II. Interspecific homology of G-banding patterns, Cytologia 41:139–144.PubMedGoogle Scholar
  24. Bickham, J. W., 1979a, Chromosomal variation and evolutionary relationships of vespertilionid bats, J. Mammal 60:350–363.Google Scholar
  25. Bickham, J. W., 1979b, Banded karyotypes of 11 species of American bats (genus Myotis), Cytologia 44:789–797.PubMedGoogle Scholar
  26. Bickham, J. W., 1981, Two-hundred-million-year-old chromosomes: Deceleration of the rate of karotypic evolution in turtles, Science 212:1291–1293.PubMedGoogle Scholar
  27. Bickham, J. W., and Baker, R. J., 1977, Implications of chromosomal variation in Rhogeessa (Chiroptera: Vespertilionidae), J. Mammal. 58:448–453.Google Scholar
  28. Bickham, J. W., and Baker, R. J., 1979, Canalization model of chromosomal evolution, in: Models and Methodologies in Evolutionary Theory, Bull Carnegie Mus. Nat. Hist. 13:70–84.Google Scholar
  29. Bickham, J. W., and Baker, R. J., 1980, Reassessment of the nature of chromosomal evolution in Mus musculus, Syst. Zool. 29:159–162.Google Scholar
  30. Brinkley, B. R., Valdivia, M. M., Toussom, A., and Brenner, S. L., 1984, Compound kinetochores of the Indian muntjac: Evolution by linear fusion of the unit kinetochores, Chromosoma 91:1–11.PubMedGoogle Scholar
  31. Brutlag, D. L., 1980, Molecular arrangement and evolution of heterochromatic DNA, Annu. Rev. Genet. 14:121–144.PubMedGoogle Scholar
  32. Bush, G. L., Case, S. M., Wilson, A. C., and Patton, J. L., 1977, Rapid speciation and chromosomal evolution in mammals, Proc. Natl. Acad. Sci. USA 74:3942–3946.PubMedGoogle Scholar
  33. Capanna, E., 1982, Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model, in: Mechanisms of Speciation (C. Baricozzi, ed.), Alan R. Liss, New York, pp. 155–177.Google Scholar
  34. Capanna, E., Civitelli, M. V., and Cristaldi, M., 1977, Chromosomal rearrangements, reproductive isolation, and speciation in mammals. The case of Mus musculus, Boll. Zool. 44:213–246.Google Scholar
  35. Chesser, R. K., and Baker, R. J., 1986, On factors affecting the fixation of chromosomal rearrangements and neutral genes: Computer simulations, Evolution 40:625–632.Google Scholar
  36. Chesser, R. K., and Ryman, N., 1986, Inbreeding as a strategy in subdivided populations, Evolution 40:616–624.Google Scholar
  37. Committee for Standardization of Chromosomes of Peromyscus, 1977, Standardized karyotype of deer mice, Peromyscus (Rodentia), Cytogenet. Cell Genet. 19:38–43.Google Scholar
  38. Cothran, E. G., and Smith, M. H., 1983, Chromosomal and genic divergence in mammals, Syst. Zool. 32:360–368.Google Scholar
  39. Creau-Goldberg, N., Cochet, C., Turleau, C, and deGrouchy, J., 1981, Comparative gene mapping of man and Cebus capucinus: A study of 23 enzymatic markers, Cytogenet. Cell Genet. 31:228–239.PubMedGoogle Scholar
  40. Darwin, C, 1859, The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life, Murray, London.Google Scholar
  41. Davis, K. M., Smith, S. A., and Greenbaum, I. S., 1986, Evolutionary implications of chromosomal polymorphism in Peromyscus hoylii from southwestern Mexico, Evolution 40:645–649.Google Scholar
  42. Dresser, M. E., and Hamilton, A. E., 1979, Chromosomes of Lemuriformes. V. A comparison of the karyotypes of Cheirogaleus medius and Lemur fulvus fulvus, Cytogenet. Cell Genet. 24:160–167.PubMedGoogle Scholar
  43. Dutrillaux, B., 1979, Chromosomal evolution in primates: Tentative phylogeny from Microcebus murinus (prosimian) to man, Hum. Genet. 48:251–314.PubMedGoogle Scholar
  44. Dutrillaux, B., Couturier, J., and Viegas-Pequignot, E., 1981, Chromosomal evolution in primates, in: Chromosomes Today, Volume 7 (M. D. Bennett, M. Bobrow, and G. Hewitt, eds.), pp. 176-191.Google Scholar
  45. Elder, F. F. B., 1980, Tandem fusion, centric fusions, and chromosomal evolution in the cotton rats, genus Sigmodon, Cytogenet. Cell Genet. 26:199–210.PubMedGoogle Scholar
  46. Endler, J. A., 1977, Geographic Variation, Speciation and Clines, Princeton University Press, Princeton, New Jersey.Google Scholar
  47. Fraccaro, M., Lindstein, J., Ford, C. E., Iselius, L., Antonelli, A., Aula, P., Aurias, A., Bain, A. D., Bartsch-Sandhoff, M., Bernardi, F., Boud, E., Buchanan, L. F., Cameron, A. H., de la Chapelle, A., Ciuffa, G., Cuoco, C., Dutrillaux, B., Dutton, G., Ferguson-Smith, M. A., Francesconi, D., Gernaedts, J. P., Gimelli, G., Gueguen, J., Garsner, E., Hagemejer, A., Hansen, F. J., Holings, P. E., Hustinx, T. W. J., Kaakmen, A., van de Kamp, J. J. P., von Koskull, H., Lejeune, J., Lindenbaum, R. H., McCreanor, H. R., Mikkelsen, M., Mitelman, F., Nicoletti, B., Nilsby, L., Nilsson, A., Noel, B., Padavoni, E., Pasquali, F., de Pater, J., Pedersen, C., Petersen, F., Robson, E. B., Rotman, J., Ryynanen, M., Sachs, E., Salat, J., Smythe, R. H., Stabeil, I., Subrt, I., Vampirelli, P., Wessner, G., Zergollern, L., and Zuffardi, O., 1980, The 11q;22q translocation: A European collaborative analysis of 43 cases, Hum. Genet. 56:21–51.PubMedGoogle Scholar
  48. Francke, U., and Taggart, R. T., 1980, Comparative gene mapping: Order of loci on the X chromosome is different in mice and humans, Proc. Natl. Acad. Sci. USA 77: 3595–3599.PubMedGoogle Scholar
  49. Futuyma, D. J., and Mayer, G. C, 1980, Non-allopatric speciation in animals, Syst. Zool. 29:254–271.Google Scholar
  50. Greenbaum, I. F., and Baker, R. J., 1978, Determination of the primitive karyotype for Peromyscus, J. Mammal. 59:820–834.PubMedGoogle Scholar
  51. Greenbaum, I. F., and Reed, M. J., 1984, Evidence of heterosynaptic pairing of the inverted segment in pericentric inversion heterozygotes of the deer mouse (Peromyscus maniculatus), Cytogenet. Cell Genet. 38:106–111.PubMedGoogle Scholar
  52. Greenbaum, I. F., Hale, D. W., and Fuxa, K. P., 1986, The mechanism of autosomal synapsis and the substaging of zygonema and pachynema from deer mouse spermatocytes, Chromosoma 93:203–212.PubMedGoogle Scholar
  53. Hafner, J. C, 1982, Genetic interactions between hybridizing cytotypes of the tent-making bat (Uroderma bilobatum), Evolution 35:305–320.Google Scholar
  54. Haiduk, M. W., 1983, Evolution in the family Pteropodidae (Chiroptera: Megachiroptera) as indicated by chromosomal and immunoelectrophoretic analyses, Ph. D. thesis, Texas Tech University, Lubbock, Texas.Google Scholar
  55. Haiduk, M. W., and Baker, R. J., 1982, Cladistical analysis of G-banded chromosomes of nectar-feeding bats (Glossphaginae: Phyllostomidae), Syst. Zool. 31:352–265.Google Scholar
  56. Haiduk, M. W., and Baker, R. J., 1984, Scientific method, opinion, phylogenetic reconstruction and nectar-feeding bats: A response to Griffiths and Warner, Syst. Zool. 33: 343–350.Google Scholar
  57. Haiduk, M. W., Baker, R. J., Robbins, L. W., and Schlitter, D. A., 1981, Chromosomal evolution in African megachiroptera: G-and C-band assessment of the magnitude of change in similar standard karyotypes, Cytogenet. Cell Genet. 29:221–232.PubMedGoogle Scholar
  58. Haiduk, M. W., Sanchez Hernandez, C, and Baker, R. J., 1987, Relationships of Nyctomys and Xenomys to other cricetine genera based on data from G-banded chromosomes, Southwest. Nat., in press.Google Scholar
  59. Hall, W. P., 1983, Modes of speciation and evolution of the sceloporine iquanid lizards. I. Epistemology of comparative approach and introduction to the problem, in: Advances in Herpetology and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, pp. 643-679.Google Scholar
  60. Harper, M. E., and Sanders, G. F., 1981, Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization, Chromosoma 83:431–439.PubMedGoogle Scholar
  61. Harper, M. E., Ullrich, A., and Sanders, G. F., 1981, Localization of the human insulin gene to the distal end of the short arm of chromosome 11, Proc. Natl. Acad. Sci. USA 78:4458–4460.PubMedGoogle Scholar
  62. Hood, C. S., and Baker, R. J., 1986, G-and C-banding chromosomal studies of the bats of the family Emballonuridae, J. Mammal. 67:705–711.Google Scholar
  63. Hood, C. S., Robbins, L. W., Baker, R. J., and Shellhammer, H. S., 1984, Chromosomal studies and evolutionary relationships of an endangered species, Reithrodontomys raviventris, J. Mammal. 65:655–667.Google Scholar
  64. Hsu, T. C., and Arrighi, F. E., 1971, Distribution of constitutive heterochromatin in mammalian chromosomes, Chromosoma 34:243–253.PubMedGoogle Scholar
  65. Imai, H. T., 1983, Quantitative analysis of karyotype alteration and species differentiation in mammals, Evolution 37:1154–1161.Google Scholar
  66. Imai, H. T., and Crozier, R. H., 1980, Quantitative analysis of directionality of mammalian karyotype evolution, Am. Nat. 116:537–569.Google Scholar
  67. Imai, H. T., Maruyama, T., and Crozier, R. H., 1983, Rates of mammalian karyotype evolution by the karyograph method, Am. Nat. 121:477–488.Google Scholar
  68. John, B., and Miklos, G. L. A., 1979, Functional aspects of satellite DNA and heterochromatin, Int. Rev. Cytol. 58:1–114.PubMedGoogle Scholar
  69. King, M., 1982, A case for simultaneous multiple chromosome rearrangements, Genetica 59:53–60.Google Scholar
  70. King, M., 1985, The canalization model of chromosomal evolution: A critique, Syst. Zool. 34:69–75.Google Scholar
  71. Koop, B. F., Baker, R. J., and Genoways, H. H., 1983, Numerous chromosomal polymorphisms in a natural population of rice rats (Oryzomys: Cricetidae), Cytogenet. Cell Genet. 35:131–135.PubMedGoogle Scholar
  72. Koop, B. F., Baker, R. J., Haiduk, M. W., and Engstrom, M. D., 1984, Cladistical analysis of the primitive G-band sequences for the karyotype of the ancestor of the Cricetidae complex of rodents, Genetica 64:199–208.Google Scholar
  73. Koop, B. F., Baker, R. J., and Mascarello, J. T., 1985, Cladistical analysis of chromosomal evolution within the genus Neotoma, Occ. Pap. Mus. Texas Tech Univ. 96:1–9.Google Scholar
  74. Krohne, D. T., Dubbs, B. A., and Baccus, R., 1984, An analysis of dispersal of an unmanipulated population of Peromyscus leucopus, Am. Midl. Nat. 112:146–156.Google Scholar
  75. Lalley, P. A., Minna, J. D., and Francke, U., 1978, Conservation of autosomal gene synteny groups in mouse and man, Nature 174:160–163.Google Scholar
  76. Lande, R., 1979, Effective deme size during longterm evolution estimated from rates of chromosomal evolution, Evolution 33:234–251.Google Scholar
  77. Larson, A., Prager, E. M., and Wilson, A. C, 1984, Chromosomal evolution, speciation and morphological change in vertebrates: The role of social behavior, in: Chromosomes Today, Volume 8, (M. D. Bennett, A. Gropp, and U. Wolf, eds.), George Allen and Unwin, London, pp. 215–228.Google Scholar
  78. Ma, N. S. F., Simeone, T., McLean, J., and Parham, P., 1982, Chromosomal localization and gene synteny of the major histocompatibility complex in the owl monkey Aotus, Immunogenetics 15:1–16.PubMedGoogle Scholar
  79. Marks, J., 1983, Rates of karyotypic evolution, Syst. Zool. 32:207–209.Google Scholar
  80. Mascarello, J. T., and Hsu, T. C, 1976, Chromosome evolution in woodrats, genus Neotoma (Rodentia: Cricetidae), Evolution 30:152–169.Google Scholar
  81. Mascarello, J. T., Stock, A. D., and Pathak, S., 1974, Conservatism in the arrangement of genetic material in rodents, J. Mammal. 55:695–704.PubMedGoogle Scholar
  82. May, R. M., Endler, J. A., and McMurtrie, R. E., 1975, Gene frequency clines in the presence of selection opposed by gene flow, Am. Nat. 109:659–676.Google Scholar
  83. McClintock, B., 1978, Mechanisms that rapidly reorganize the genome, Stadler Genet. Symp. Univ. Missouri 10:25–47.Google Scholar
  84. Miklos, G. L. G., Willcocks, D. A., and Baverstock, P. R., 1980, Restriction endonuclease and molecular analysis of three rat genomes with special reference to chromosomal rearrangement and speciation problems, Chromosoma 76:339–363.PubMedGoogle Scholar
  85. Modi, W. S., 1986, Karyotypic differentiation among two sibling species pairs of New World microtine rodents, J. Mammal. 67:159–165.Google Scholar
  86. Modi, W. S., and Lee, M. R., 1985, Systematic implications of chromosomal banding analyses of populations of Peromyscus truei (Rodentia: Muridae), Proc. Biol. Soc. Wash. 97:716–723.Google Scholar
  87. Nelson, K., Baker, R. J., Shellhammer, H. S., and Chesser, R. K., 1984, Test of alternative hypothesis concerning the origin of Reithrodontomys raviventris: Genetic analysis, J. Mammal. 65:688–673.Google Scholar
  88. Pathak, S., 1976, Chromosome banding techniques, J. Reprod. Med. 17:15–18.Google Scholar
  89. Patton, J. C., and Baker, R. J., 1978, Chromosomal homology and evolution in phyllostomatoid bats, Syst. Zool. 27:449–462.Google Scholar
  90. Patton, J. L., and Sherwood, S. W., 1982, Genome evolution in pocket gophers (genus Thomomys). I. Heterochromatin variation and speciation potential, Chromosoma 85: 149.PubMedGoogle Scholar
  91. Patton, J. L., and Sherwood, S. W., 1983, Chromosome evolution and speciation in rodents, Annu. Rev. Ecol. Syst. 14:139–158.Google Scholar
  92. Qumsiyeh, M. B., 1986a, Chromosomal evolution in the rodent family Gerbillidae, Ph. D. thesis, Texas Tech University, Lubbock, Texas.Google Scholar
  93. Qumsiyeh, M. B., 1986b, Phylogenetic studies of the rodent family Gerbillidae: I. Chromosomal evolution in the southern African complex, J. Mammal. 67:680–692.Google Scholar
  94. Qumsiyeh, M. B., and Baker, R. J., 1985, G-and C-banded karyotypes of the Rhinopomatidae (Microchiroptera), J. Mammal. 66:541–544.Google Scholar
  95. Ralls, K., Harvey, P. H., and Lyles, A. M., 1986, Inbreeding in natural populations of birds and mammals, in: Conservation Biology: The Science of Scarcity and Diversity. (M. E. Soule, ed.), Shaver Associates, Inc., Sunderland, Mass., pp. 35–36.Google Scholar
  96. Robinson, T. J., Elder, F. F. B., and Chapman, T. A., 1983, Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). I. Sylvilagus aquaticus, S. floridanus, and S. transitionalis, Cytogenet. Cell Genet. 35:216–222.PubMedGoogle Scholar
  97. Robinson, T. J., Elder, F. F. B., and Chapman, T. A., 1984, Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). II. Sylvilagus audibonii, S. idahoensis, S. nuttallii, and S. palustris, Cytogenet. Cell Genet. 38: 282–289.PubMedGoogle Scholar
  98. Robbins, L. W., and Baker, R. J., 1981, An assessment of the nature of chromosome rearrangements in 18 species of Peromyscus (Rodentia: Cricetidae), Cytogenet. Cell Genet. 31:194–202.PubMedGoogle Scholar
  99. Rofe, R., and Hayman, D., 1985, G-banding evidence for a conserved complement in the Marsupialia, Cytogenet. Cell Genet. 39:40–50.PubMedGoogle Scholar
  100. Rogers, D. S., 1983, Phylogenetic affinities of Peromyscus (Megadontomys) thomasi: Evidence from differentially stained chromosomes, J. Mammal. 64:617–623.Google Scholar
  101. Rogers, D. S., Greenbaum, I. F., Dunn, S. J., and Engstrom, M. D., 1984, Cytosystematic value of chromosomal inversion data in the genus Peromyscus (Rodentia: Cricetidae), J. Mammal. 65:457–465.Google Scholar
  102. Ryder, O., Epel, N., and Benirschke, K., 1978, Chromosome banding studies of the Equidae, Cytogenet. Cell Genet. 20:323–350.Google Scholar
  103. Rumpler, Y., Courturier, J., Warter, S., and Dutrillaux, B., 1983, Chromosomal evolution in Malagasy lemurs, Cytogenet. Cell Genet. 36:542–546.PubMedGoogle Scholar
  104. Sawyer, J. R., and Hozier, J. C, 1986, High resolution of mouse chromosomes: banding conservation between man and mouse, Science 232:1632–1635.PubMedGoogle Scholar
  105. Searle, J. B., 1984, Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny, Syst. Zool. 33:184–194.Google Scholar
  106. Shaw, D. D., Wilkinson, P., and Coates, D. J., 1983, Increased chromosomal mutation rate after hybridization between two subspecies of grasshoppers, Science 220: 1165–1167.PubMedGoogle Scholar
  107. Sherwood, S. W., and Patton, J. L., 1982, Genome evolution in pocket gophers (genus Thomomys). II. Variation in cellular DNA content, Chromosoma 85:163–179.PubMedGoogle Scholar
  108. Shi, L. M., Ye, Y. Y., and Duan, X., 1980, Comparative cytogenetic studies on the red muntjac, Chinese muntjac, and their F1 hybrids, Cytogenet. Cell Genet. 96:22–27.Google Scholar
  109. Shields, G. F., 1982, Comparative avian cytogenetics, A review, Condor 84:45–58.Google Scholar
  110. Singer, M. F., 1982, Highly repetitive sequences in mammalian genomes, Int. Rev. Cytol. 76:67–112.PubMedGoogle Scholar
  111. Sites, J. W., Jr., 1983, Chromosome evolution in the iquanid lizard Sceloporus grammicus. I. Chromosome polymorphisms, Evolution 37:38–53.Google Scholar
  112. Sites, J. W., Jr., Bickham, J. W., and Haiduk, M. W., 1981, Conservative chromosomal change in the bat family Mormoopidae, Can. J. Gen. Cytol. 23:459–467.Google Scholar
  113. Slatkin, M., 1973, Gene flow and selection in a cline, Genetics 75:733–756.PubMedGoogle Scholar
  114. Stallings, R. L., Munk, A. C., Longmire, J. L., Jeff, J. H., Wilder, M. E., Sciliano, M. J., Adair, G. M., and Crawford, B. D., 1985, Oncogenes and linkage groups, Conservation during mammalian chromosome evolution, Chromosoma 92:256–163.Google Scholar
  115. Stangl, F. B., Jr., 1986, Dynamics of chromosomal variation between chromosomally characterized races of Peromyscus Jeucopus (Rodentia: Cricetidae), J. Mammal. 67: 465–473.Google Scholar
  116. Stangl, F. B., Jr., and Baker, R. J., 1984, Evolutionary relationships in Peromyscus: Congruence in chromosomal, genic, and classical data sets, J. Mammal. 65:643–654.Google Scholar
  117. Stubblefield, E., 1980, Chromosome bands and the subunit structure of Chinese hamster metaphase chromosomes, Cytogenet. Cell Genet. 26:191–198.PubMedGoogle Scholar
  118. Tegelstrom, H., Ebenhard, T., and Ryttman, H., 1983, Rate of karyotype evolution and speciation in birds, Hereditas 98:235–239.PubMedGoogle Scholar
  119. Viegas-Pequignot, E., Koiffman, C. D., and Dutrillaux, B., 1985, Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao, Cytogenet. Cell Genet. 39:99–104.PubMedGoogle Scholar
  120. White, M. J. D., 1975, Chromosomal repatterning—Regularities and restrictions, Genetics 79:63–72.PubMedGoogle Scholar
  121. White, M. J. D., 1978, Modes of Speciation, Freeman, San Francisco.Google Scholar
  122. Wilson, A. C., Maxson, L. R., and Sarich, V. M., 1974, The importance of gene rearrangement in evolution: Evidence from studies on rates of chromosomal, protein, and anatomical evolution, Proc. Natl. Acad. Sci. USA 71:3028–3030.PubMedGoogle Scholar
  123. Wilson, A. C., Bush, G. L., Case, S. M., and King, M. C, 1975, Social structuring of mammalian populations and rate of chromosomal evolution, Proc. Natl. Acad. Sci. USA 72:5061–5065.PubMedGoogle Scholar
  124. Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, V. B., Helm-Bychouski, R. M., Higguchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D., Stoneking, M., 1985, Mitochondrial DNA and two perspectives on evolutionary genetics, Biol. J. Linnean Soc. 26:375–400.Google Scholar
  125. Wright, S., 1941, On the probability of fixation of reciprocal translocations, Am. Nat. 75: 513–522.Google Scholar
  126. Wurster-Hill, D. H., and Bush, M., 1980, The interrelationships of chromosome banding patterns in the giant panda (Ailuropoda melanoleuca), hybrid bear (Ursus middendorfi × Thalarctos maritimus), and other carnivores, Cytogenet. Cell Genet. 27: 147–154.PubMedGoogle Scholar
  127. Wurster-Hill, D. H., and Centerwall, W. R., 1982, The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids, Cytogenet. Cell Genet. 34: 178–192.PubMedGoogle Scholar
  128. Wurster-Hill, D. H., and Gray, C. W., 1973, Giemsa banding patterns in the chromosomes of twelve species of cats (Felidae), Cytogenet. Cell Genet. 12:377–397.Google Scholar
  129. Wurster-Hill, D. H., and Gray, C. W., 1975, The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids, Cytogenet. Cell Genet. 15:306–331.PubMedGoogle Scholar
  130. Yates, T. L., Baker, R. J., and Barnett, R. K., 1979, Phylogenetic analysis of karyological variations in three genera of peromyscine rodents, Syst. Zool. 28:40–48.Google Scholar
  131. Yunis, J. J., 1980, Nomenclature for high resolution human chromosomes, Cancer Genet. Cytogenet. 2:221–229.Google Scholar
  132. Yunis, J. J., 1981, Mid-prophase human chromosomes. The attainment of 2000 bands, Hum. Genet. 56:293–298.PubMedGoogle Scholar
  133. Yunis, J. J., and Prakash, O. M., 1982, The origin of man: A chromosomal pictorial legacy, Science 215:1505–1530.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Robert J. Baker
    • 1
  • Mazin B. Qumsiyeh
    • 1
  • Craig S. Hood
    • 1
  1. 1.Department of Biological Sciences and The MuseumTexas Tech UniversityLubbockUSA

Personalised recommendations