Advertisement

Magnetic Circular Dichroism in Photoemission from Rare-Earth Materials: Basic Concepts and Applications

  • G. Kaindl
  • E. Navas
  • E. Arenholz
  • L. Baumgarten
  • K. Starke
Part of the NATO ASI Series book series (NSSB, volume 345)

Abstract

Magneto-optical Kerr effect and Faraday effect provide the basis of established methods for studying the magnetic properties of matter by polarized light in the visible spectral range. It was only quite recently that an analogous effect in the x-ray region, magnetic circular dichroism in x-ray absorption, was first observed by Gisela Schütz et al. for the near-edge fine structure at the K edge of ferromagnetic iron.1 Later on, magnetic circular x-ray dichroism (MCXD) was also observed at the LII,III thresholds of rare-earths2 and 3d transition metals,3 opening up the possibility for element-specific analyses of magnetic moments in compound magnets and multilayers. Today MCXD is mainly used as a tool at the LII,III x-ray absorption thresholds of 3d transition metals, where relatively large MCD asymmetries in the white lines upon reversal of either sample magnetization or circular polarization (photon spin) of the absorbed light are observed. MCXD can be understood in the simplest way in a one-electron picture by taking the spin polarization of the excited electron due to the inner-shell spin-orbit coupling (Fano effect4) into account as well as the spin-split density of final states at and above the Fermi level.5 More rigorous theoretical treatments have been given,6,7,8 which allow to recognize the three important ingredients for magnetic circular dichroism: (i) Exchange interaction as the driving force for long-range spin order; (ii) use of circularly polarized light with preferential propagation along the magnetic quantization axis; (iii) spin-orbit interaction providing the mechanism for an effective coupling between the angular momentum of the circularly polarized photon and the magnetically ordered electron spins.

Keywords

Circular Polarization Magnetic Circular Dichroism Exchange Splitting Antiparallel Orientation Rare Earth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58: 737 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    G. Schütz, M. Knülle, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, and R. Frahm, Z. Physik B 73: 67 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    C.T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42: 7262 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    U. Fano, Phys. Rev. 178: 131 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    G. Schütz, Phys. Blätter 46: 475 (1990).CrossRefGoogle Scholar
  6. 6.
    H. Ebert, P. Strange, and B.L. Gyorffy, Z. Phys. B 73: 77 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    P. Carra and M. Altarelli, Phys. Rev. Lett. 64: 1286 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68: 1943 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    L. Baumgarten, CM. Schneider, H. Petersen, F. Schäfers, and J. Kirschner, Phys. Rev. Lett. 65: 492 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    H. Ebert, L. Baumgarten, CM. Schneider, and J. Kirschner, Phys. Rev. B 44: 4406 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    CM. Schneider, M.S. Hammond, P. Schuster, A. Cebollada, R. Miranda, and J. Kirschner, Phys. Rev. B 44: 12066 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    E. Navas, K. Starke, C. Laubschat, E. Weschke, and G. Kaindl, Phys. Rev. B 48 — Rap. Commun.: 14753(1993).ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Fedorov, A. Höhr, E. Weschke, K. Starke, V.K. Adamchuk, and G. Kaindl, Phys. Rev B 49 — Rap. Commun.: 5117 (1994); and references therein.ADSCrossRefGoogle Scholar
  14. 14.
    J. Bahrdt, A. Gaupp, W. Gudat, M. Mast, K. Molter, W.B. Peatman, M. Scheer, Th. Schroeter, and Ch. Wang, Rev. Sci. Instrum. 63: 339 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    H. Petersen, M. Willmann, F. Schäfers, and W. Gudat, Nucl. Instrum. Methods A 333: 594 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    S. Di Fonzo, W. Jark, F. Schaefers, H. Petersen, A. Gaupp, and J.H. Underwood, Appl. Optics 33, 2624 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    M. Born and E. Wolf. “Principles of Optics”, Pergamon Press, London (1959).MATHGoogle Scholar
  18. 18.
    B.J. Beaudry and K.A. Gschneidner, in: “Handbook of Physics and Chemistry of Rare Earths”, Vol. 1, K.A. Gschneidner and L.R. Eyring eds., North-Holland, Amsterdam (1978).Google Scholar
  19. 19.
    J. Kolaczkiewicz and E. Bauer, Surf. Sci. 175: 487 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, and F. Gerhardter, Phys. Rev. B 47: 11571 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    K. Starke, K. Ertl, and V. Dose, Phys. Rev. B 46: 9709 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    K. Starke, E. Navas, L. Baumgarten, and G. Kaindl, Phys. Rev. B 48 — Rap. Commun.: 1329(1993).ADSCrossRefGoogle Scholar
  23. 23.
    G. van der Laan and B.T. Thole, Phys. Rev. B 48: 210 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    G. van der Laan, private communication.Google Scholar
  25. 25.
    K. Starke, L. Baumgarten, E. Arenholz, E. Navas, and G. Kaindl, Phys. Rev. B — Rap. Commun.: in print (1994).Google Scholar
  26. 26.
    E. Navas, E. Arenholz, K. Starke, and G Kaindl, to be published.Google Scholar
  27. 27.
    J. Sugar, Phys. Rev. B 5: 1785 (1972).ADSCrossRefGoogle Scholar
  28. 28.
    C. Laubschat, E. Weschke, G. Kalkowski, and G. Kaindl, Physica Scripta 41: 124 (1990).ADSCrossRefGoogle Scholar
  29. 29.
    F. Gerken, J. Barth, and C. Kunz, Phys. Rev. Lett. 47: 993 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    L. Baumgarten, E. Arenholz, E. Navas, K. Starke, and G. Kaindl, to be published.Google Scholar
  31. 31.
    J.L. Dehmer, A.F. Starace, U. Fano, J. Sugar, and J.W. Cooper, Phys. Rev. Lett. 26: 1521 (1971).ADSCrossRefGoogle Scholar
  32. 32.
    S. Imada and T. Jo, J. Phys. Soc. Jap. 59: 3358 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    D. Weiler, S.F. Alvarado, W. Gudat, K. Schröder, and M. Campagna, Phys. Rev. Lett. 54: 1555(1985).ADSCrossRefGoogle Scholar
  34. 34.
    G.A. Mulhollan, K. Garrison, and J.L. Erskine, Phys. Rev. Lett. 69: 3240 (1992).ADSCrossRefGoogle Scholar
  35. 35.
    E. Vescovo, C. Carbone, and O. Rader, Phys. Rev. B 48 — Rap. Commun.: 7731 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    S. Doniach and M. Sunjic, J. Phys. C 3: 285 (1970).ADSCrossRefGoogle Scholar
  37. 37.
    H. Tang, D. Weller, TG. Walker, J.C. Scott, C. Chappert, H. Hopster, AW. Pang, D.S. Dessau, and D.P. Pappas, Phys. Rev. Lett. 71: 444 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    C. Rau, Appl. Phys. A 49: 579 (1989).ADSCrossRefGoogle Scholar
  39. 39.
    Y.U. Idzerda and D.E. Ramaker, Mat. Res. Soc. Symp. Proc. 313: 659 (1993).CrossRefGoogle Scholar
  40. 40.
    J. Daval and B. Bechevet, J. Magn. Magn. Mater. 129: 98 (1994).ADSCrossRefGoogle Scholar
  41. 41.
    E. Arenholz, K. Starke, E. Navas, and G. Kaindl, to be published.Google Scholar
  42. 42.
    A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Physica B (Amsterdam) 100: 1 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    A. Stenborg, J.N. Andersen, O. Björneholm, A. Nilsson, and N. Mârtensson, Phys. Rev. Lett. 63: 187(1989).ADSCrossRefGoogle Scholar
  44. 44.
    A. Stenborg, O. Björneholm, A. Nilsson, N. Mârtensson, J.N. Andersen, and C. Wigren, Surf. Sci. 211/212:470(1989).ADSCrossRefGoogle Scholar
  45. 45.
    J. Mathon and SB. Ahmad, Phys. Rev. B 37 — Rap. Commun.: 660 (1988).ADSCrossRefGoogle Scholar
  46. 46.
    J. Stöhr, Y. Wu, M.G. Samant, B.D. Hermsmeier, G. Harp, S. Koranda, D. Dunham, and B.P. Tonner, Science 259: 658 (1993).ADSGoogle Scholar
  47. 47.
    T. Kachel, W. Gudat, and K. Holldack, Appl. Phys. Lett. 64: 655 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. Kaindl
    • 1
  • E. Navas
    • 1
  • E. Arenholz
    • 1
  • L. Baumgarten
    • 1
    • 2
  • K. Starke
    • 1
  1. 1.Institut für ExperimentalphysikFreie Universität BerlinBerlin-DahlemGermany
  2. 2.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations