Spin Resolved Soft X-Ray Appearance Potential Spectroscopy

  • Volker Dose
Part of the NATO ASI Series book series (NSSB, volume 345)


A solution of the longstanding and persisting problem of band ferromagnetism will finally emerge from an understanding of the spindependent electronic structure of ferromagnetic materials1. The prominent difficulty on this way is the rather small energy associated with magnetic ordering which is of the order of KTc where Tc is the materials Curie temperature. This amount of energy is smaller or at most comparable to the presently achievable precision of band structure theory. The difficulties on the theoretical side have an experimental counterpart, namely the complexity added to standard band structure techniques by the necessity of analysis or proper preparation of electron spin. In fact the limited resolving power of spin detectors and the finite degrees of polarization of electron beams, usually only a fraction of the ideal 100%, enlarge the times for data aquisition sometimes to a prohibitive limit. Consider for example a quantity S which responds with S+ and S- counts respectively to a number of N of 100% positively and negatively spin polarized electrons. For the much more realistic situation that only a beam of say p, typically 30%, spin polarization is available one would need at least N/p2 electrons in order to determine S+ and S- with the previous relative precision. Theoretical and experimental approaches to the problem of band ferromagnetism will therefore remain a tedious job.


Spin Polarization Auger Electron Spectroscopy Core Level Target Magnetization Magneto Optical Kerr Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Physics Thorough the 1990s, Condensed Matter Physics, National Academy Press, Washington DC, p. 112(1986).Google Scholar
  2. 2.
    R. Feder (ed), Polarized Electrons in Surface Physics, World Scientific (1986).Google Scholar
  3. 3.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm and G. Materlik, Phys. Rev. Lett. 58, 737 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    J. B. Goedkoop, B.T. Thole, G. van der Laan, G.A. Sawatzky, F.M.F. de Groot and J.C. Figgle, Phys. Rev. B 37, 2086 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    R. Weissmann and K. Müller, Surf. Sci. Rept. 1, 251 (1981).CrossRefGoogle Scholar
  6. 6.
    R.L. Park and J.E. Houston, J. Vac. Sci. Technol. 11, 1 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Houston and R.L. Park, Phys. Rev. B5, 3808 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    J. Kirschner and P. Staib, Appl. Phys. 6, 99 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Lander, Phys. Rev. 91, 1382 (1953).ADSCrossRefGoogle Scholar
  10. 10.
    M. Cini, Solid State Commun. 24, 684 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    G.A. Sawatzky and A. Lenselink, Phys. Rev. B21, 1790 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    W. Nolting, G. Geipel and K. Ertl, Z. Phys. B92, 75 (1993).CrossRefGoogle Scholar
  13. 13.
    M. Landolt and D. Mauri, Phys. Rev. Lett. 49, 1783 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    M. Landolt, R. Allenspach and M. Taborelli, Surf. Sci. 178, 311 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    V. Dose, R. Drube and A. Härtl, Solid State Commun. 57, 273 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    M. Vonbank, K. Ertl, G. Geipel and V. Dose, Symposium on Surface Science Contributions, Obertraun (1991).Google Scholar
  17. 17.
    D.T. Pierce and F. Meier, Phys. Rev. B13, 5484 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    U. Kolac, M. Donath, K. Ertl, H. Liebl and V. Dose, Rev. Sci. Instrum. 51, 478 (1988).Google Scholar
  19. 19.
    K. Starke, K. Ertl and V. Dose, Phys. Rev. B46, 9709 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    M. Donath, Appl. Phys. A49, 351 (1989).CrossRefGoogle Scholar
  21. 21.
    K. Ertl, M. Vonbank, V. Dose and J. Noflke, Solid State Commun. 88, 557 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    J. Kirschner, Solid State Commun. 49, 39 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    L. Fritsche, J. Nofflce and H. Eckardt, J. Phys. F17, 943 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    M. Donath, V Dose, K. Ertl and U. Kolac, Phys. Rev. B41, 5509 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    A. Goldmann, W. Altmann and V Dose, Solid State Commun. 79, 511 (1991).ADSCrossRefGoogle Scholar
  26. 26.
    A. Santoni and F.J. Himpsel, Phys. Rev. B43, 1305 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    A.J. Freeman and R. Wu, J. Magn. Magn. Mat. 100, 497 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    V. Dose and G. Reusing, Solid State Commun. 48, 683 (1983).ADSCrossRefGoogle Scholar
  29. 29.
    L. Baumgarten, C.M. Schneider, H. Petersen, F. Schäfers and J. Kirschner, Phys. Rev. Lett. 65, 492 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    H. Ebert, L. Baumgarten, C.M. Schneider and J. Kirschner, Phys. Rev. B44, 4406 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Volker Dose
    • 1
  1. 1.EURATOM AssociationMax-Planck-Institut für PlasmaphysikGarching bei MünchenGermany

Personalised recommendations