Advertisement

Application of Control Analysis to the Study of Amino Acid Metabolism

  • Richard G. Knowles
  • Christopher I. Pogson
  • Mark Salter
Chapter
Part of the NATO ASI Series book series (NSSA, volume 190)

Abstract

For laboratory scientists studying the control of metabolism, the usefulness or otherwise of theories of metabolic control is determined by the ease of their utility for the analysis of experimental data, and the insights into the control of metabolism provided by this data analysis. In this chapter we describe the application of the metabolic control theory developed by Higgins (1965), Kacser & Bums (1973) and Heinrich & Rapoport (1974) to our studies of amino acid metabolism both previous and current. We have found this theory of control analysis and modelling of the pathways under study, to be invaluable tools in the elucidation of the control structure of amino acid metabolism. The distinction between regulatory importance, regulability and control, and the way in which the regulability and control coefficients of an enzyme combine to describe its regulatory importance will be discussed.

Keywords

Amino Acid Metabolism Control Coefficient Regulatory Importance Inhibitor Titration Plasma Tryptophan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, R. R., Borden, E. C., Sondel, P. M., & Lee, C. M. (1987) in Tryptophan and Serotonin Research, 1986 (Bender, D. A., Joseph, M. H., Koche, W. & Steinhart, H., eds.) pp. 19–26, Walter de Gruyter, New YorkGoogle Scholar
  2. Heinrich, R & Rapoport, T. A. (1974) Eur. J. Biochem. 42, 107–120PubMedCrossRefGoogle Scholar
  3. Higgins, J. (1965) in Control of Energy Metabolism (Chance, B., Estabrook, R. K., & Williamson, J. R., eds.) pp. 13–46, Academic Press, New YorkGoogle Scholar
  4. Kacser, H. & Burns, J. A. (1973) Symp. Soc. Exp. Biol. 27, 65–104PubMedGoogle Scholar
  5. Kacser, H & Bums, J. A. (1979) Biochem. Soc. Trans. 7, 1149–1161PubMedGoogle Scholar
  6. Kilberg, M. S., Handlogten, M. E. & Christensen, H. N. (1980) J. Biol. Chem. 255, 4011–4019PubMedGoogle Scholar
  7. Ochs, R. S. (1986) Trends Biochem. Sci. 11, 235–236CrossRefGoogle Scholar
  8. Okuno, E., White, R. J., & Schwarcz, R. (1988) J. Biochem. 103, 1054–1059PubMedGoogle Scholar
  9. Pogson, C. I., Knowles, R. G. & Salter, M. (1989) Crit. Rev. Neurobiol., in pressGoogle Scholar
  10. Salter, M., Knowles, R. G. & Pogson, C. I. (1986a) Biochem. J. 234, 635–647PubMedGoogle Scholar
  11. Salter, M., Knowles, R. G. & Pogson, C. I. (1986b) Biochem. J. 233, 499–506PubMedGoogle Scholar
  12. Stone, T. W., & Connick, J. H. (1985) Neuroscience 15, 597–617PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Richard G. Knowles
    • 1
  • Christopher I. Pogson
    • 1
  • Mark Salter
    • 1
  1. 1.Department of Biochemical SciencesThe Wellcome Research LaboratoriesKentUK

Personalised recommendations