The Impact of Technology on Control Methods

  • M. Drouin
  • H. Abou-Kandil
  • M. Mariton
Part of the Applied Information Technology book series (AITE)


In order to bring together the main ideas presented in the previous chapters, a step by step construction of a control structure for complex systems is proposed here. As expected, technology and methodology are closely related, and control algorithms have to be adapted in function of available technological solutions.


Feedback Gain Disturbance Rejection Local Controller Control Trajectory Multivariable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Kandil, H., Contribution à la commande décentralisée de systèmes complexes et mise en oeuvre numérique, Docteur-Ingénieur thesis, University of Paris X I, 1981.Google Scholar
  2. Aoki, M., On decentralized linear stochastic control problems with quadratic cost, IEEE Trans. Autom. Control, vol. 18, pp. 243–250, 1973.MATHCrossRefGoogle Scholar
  3. Chong, C. Y., M. Athans, On the stochastic control of linear systems with different information sets, IEEE Trans. Autom. Control, vol. 16, pp. 423–430, 1971.MathSciNetCrossRefGoogle Scholar
  4. Drouin, M., P. Bertrand, A new coordination structure for on line control of complex processes, Large Scale Systems, vol. 3, pp. 147–157, 1982.MathSciNetMATHGoogle Scholar
  5. Ermer, C.M., V.D. Vandelinde, Output feedback gains for a linear discrete stochastic control problem, IEEE Trans. Autom. Control, vol. 18, pp. 154–157, 1973.MathSciNetMATHCrossRefGoogle Scholar
  6. Falb, P.L., E. Wolowitch, On the structure of multivariable system, SIAM J. Control Optim., vol. 7, pp. 437–451, 1969.MATHCrossRefGoogle Scholar
  7. Ho, Y.C., K.C. Chu, Information structure in dynamic multi-person control problems, Automatica, vol. 10, pp. 341–351, 1974.MathSciNetMATHCrossRefGoogle Scholar
  8. Jamshidi, M., Large Scale Systems - Modelling and Control, North Holland, New York, 1983.Google Scholar
  9. Kleinman, D.L., Stabilizing a discrete, constant linear system with application to iterative methods for solving the Riccati equation, IEEE Trans. Autom. Control, vol. 19, pp. 252–254, 1974.MathSciNetMATHCrossRefGoogle Scholar
  10. Rhodes, I.B., D. Luenberger, Stochastic differential games with constrained state estimators, IEEE Trans. Autom. Control, vol. 14, pp. 476–481, 1969.MathSciNetCrossRefGoogle Scholar
  11. Sandell, N.R., Information flow in decentralized stochastic systems; in “Directions in Large Scale Systems”, Y.C. Ho and S.K. Miner, Ed., Plenum Press, New York, 1976.Google Scholar
  12. Singh, M.G., Decentralized Control, North-Holland, Amsterdam, 1981.Google Scholar
  13. Von Neuman, J., O. Morgenstern, Theory of games and economic behaviour, Princeton Univ. Press, Princeton, New Jersey, 1944.Google Scholar
  14. Wang, S.H., E.J. Davison, On the stabilization of decentralized control systems, IEEE Trans. Autom. Control, vol. 18, pp. 473–478, 1973.MathSciNetMATHCrossRefGoogle Scholar
  15. Witsenhausen, H.S., On information structures, feedback and causality, SIAM J. Control Optim., vol. 9, pp. 149–160, 1971.MathSciNetMATHCrossRefGoogle Scholar
  16. Wonham, W.M., Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York, 1979.MATHCrossRefGoogle Scholar
  17. Zoppoli, R., Communication problems in decentralized control systems, Progress in Cybernetics and Systems Research, vol. 1, pp. 110–123, 1975.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Drouin
    • 1
  • H. Abou-Kandil
    • 1
  • M. Mariton
    • 2
  1. 1.University of Paris VI and Laboratory of Signals and SystemsGif-sur-YvetteFrance
  2. 2.MATRA SEP Imagerie et Informatique and Laboratory of Signals and SystemsGif-sur-YvetteFrance

Personalised recommendations