Advertisement

Decomposition-Coordination Methods

A New Approach
  • M. Drouin
  • H. Abou-Kandil
  • M. Mariton
Part of the Applied Information Technology book series (AITE)

Abstract

This chapter is devoted to the presentation of a new method for on-line hierarchical control of complex systems.

Keywords

Riccati Equation Coordination Vector Linear Quadratic Regulator Algebraic Riccati Equation Costate Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrault, A.Y., Produit étoile et fonction signe de matrice, application à l’équation de Riccati dans le cas discret; R.A.I.R.O. Automatique, Vol. 14, pp. 55–85, 1980.Google Scholar
  2. Bauman E.J., Trajectory decomposition, in Optimization Methods for Large Scale Systems, D.A. Wismer Ed., McGraw Hill, New York, pp. 275–290, 1971.Google Scholar
  3. Drouin M., “Elaboration de nouvelles structures de commande des processus complexes”, Doctoral Thesis, Université de Paris XI, France, 1981.Google Scholar
  4. Drouin M., P. Bertrand, “New coordination structure for on-line control of complex processes”, J. Large Scale Systems n° 3, pp. 147–157, 1982.MathSciNetMATHGoogle Scholar
  5. Findeisen W, and co-authors, Control and Coordination in Hierarchical Systems, John Wiley, London, 1979.Google Scholar
  6. Laub A.J., A Shur method for solving algebraic Riccati equation; IEEE Trans. Automatic Control, Vol.AC-24, pp. 913–921, 1979.Google Scholar
  7. Lefkowitz I., Multi-level approach applied to control system design, Trans. ASME, Vol.88, n° 2, 1966.Google Scholar
  8. Mesarovic M.D., D, Macko, Y. Takahara, Theory of Hierarchical Multi-level Systems, Academic Press, New York, 1970.Google Scholar
  9. Ortega J.M. and N.C. Rheinboldt, Iterative solution of non-linear equations in several variables, Academic Press, New York, 1970.Google Scholar
  10. Sandell N.R., P. Varaiya, M. Athans and M.G. Safonov, Survey of decentralized method for large scale systems, IEEE Trans. Automatic Control, Vol. AC-23, n° 2, pp. 108–128.Google Scholar
  11. Siljak D.D., Large-scale dynamical systems, Elsevier North-Holland, New York, 1978.Google Scholar
  12. Singh M.G., M. Hassan, “A comparison of two hierarchical optimization methods”, Int. J. Syst. Sci., Vol. 7, pp. 603–611, 1976.MathSciNetMATHCrossRefGoogle Scholar
  13. Singh M.G., A. Titli, Systems: Decomposition, Optimization and Control, Pergamon Press, Oxford, 1978.Google Scholar
  14. Takahara Y., A multi-level structure for a class of dynamical optimization problems, MS Thesis, Case Western Reserve University, Cleveland, 1965.Google Scholar
  15. Titli A., Contribution à l’étude des structures de commande hiérarchisées en vue de l’optimisation des processus complexes, Doctoral Thesis, Université de Toulouse, France 1973.Google Scholar
  16. Titli A., M.F. Hassan and M.G. Singh, Coordination en ligne des systèmes dynamiques complexes, Rapport Interne LAAS, n° 1833, Toulouse, France.Google Scholar
  17. Vaughan D.R., A non recursive algebraic solution for the discrete Riccati equation; IEEE Trans. Automatic control, Vol.AC-15, pp. 597–599, 1970.Google Scholar
  18. Wassel M., H.D. Wend, On the implementation of hierarchically organized optimization algorithms, in Handbook of Large-Scale systems engineering applications, M.G. Singh, A. Titli Eds., North-Holland, Amsterdam, 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Drouin
    • 1
  • H. Abou-Kandil
    • 1
  • M. Mariton
    • 2
  1. 1.University of Paris VI and Laboratory of Signals and SystemsGif-sur-YvetteFrance
  2. 2.MATRA SEP Imagerie et Informatique and Laboratory of Signals and SystemsGif-sur-YvetteFrance

Personalised recommendations