Neurotransmission and Neuromodulation Involved in the Control of Respiration

  • Paweł Grieb


In classical textbooks of physiology the network generating respiratory rhythm was described as an “oscillator”, and it used to be modelled “cybernetically” by analogy to electronic oscillators. Such an interpretation resulted from the then-actual concept of synaptic transmission as a mere continuation of nerve conduction.


Central Pattern Generator Postsynaptic Membrane Respiratory Rhythm Spinal Cord Cell Chemical Transmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati, L. F., Fuxe, K., Zoli, M., Merlo Pich, E., Benfenati, F., Zini, I., and Goldstein, M., 1986, Aspects of the information handling by the central nervous system: focus on cotransmission in the aged rat brain, Progr. Brain Res. 68: 291.CrossRefGoogle Scholar
  2. Akil, H. S., Watson, S. J., Young, E., Lewis, M.E., Khachaturian, H. and Walker, J. M., 1984, Endogenous opioids: biology and function, Ann. Rev. Neurosci. 7: 223.PubMedCrossRefGoogle Scholar
  3. Aoki, M., Mori, S., Kawahara, K., Watanabe, H., and Ebata. N., 1980, Generation of spontaneous respiratory rhythm in spinal cats, Brain Res. 202: 51.PubMedGoogle Scholar
  4. Berridge, M. J., 1984, Inositol triphosphate and diacylglycerol as second messengers, Biochem. J. 220: 345.PubMedGoogle Scholar
  5. Borison, H. L., 1981, Central nervous respiratory depressants — anesthetics, hypnotics, sedatives and other respiratory depressants, in: “Respiratory Pharmacology”, J. G. Widdicombe, ed., Pergamon Press, Oxford.Google Scholar
  6. Brown, D. A., 1986, Synaptic mechanisms, Trends Neurosci. 9: 468.CrossRefGoogle Scholar
  7. BudziAska, K., Grieb, P., and Romaniuk, J.R., 1985, Morphine selectively facilitates the inspiratory-inhibitory reflex in rabbits, Experientia 41: 458.CrossRefGoogle Scholar
  8. Champagnat, J., Richter, D. W., Jacquin, T. and Denavit-Saubié, M., 1985, Voltage-dependent conductances in neurones of the ventrolateral NTS in rat brainstem slices, in: “Nobel Conference 1985 on Neurobiology of the Control of Breathing”, Karolinska Institutet, Stockholm, no. 32.Google Scholar
  9. Cloix, J. F., Grichois, M. L., Borrits, D., Sylvestre, D., Boudet, J., Guicheney, P. and Meyer, P., 1987, Comparison of biochemical properties of semi-purified Endogenous Digitalis-Like Compounds (EDLC) from human urine and hemofiltrat, Neurosci. 22: S392.Google Scholar
  10. Dekin, M. S. and Getting, P. A., 1984, Firing pattern of neurons in the nucleus tractus solitarius: modulation by membrane hyperpolarization, Brain Res. 324: 180.PubMedCrossRefGoogle Scholar
  11. Dekin, M. S. and Getting, P. A., 1985, Pattern formation at the neuronal level: role of intrinsic membrane currents, in: “Nobel Conference 1985 on Neurobiology of the Control of Breathing”, Karolinska Institutet, Stockholm, no. 31.Google Scholar
  12. Denavit-Saubié, M., Champagnat, J., and Morin-Surun. M.P., 1985, Chemical transmission and central respiratory mechanismis, in: “Neurogenesis of Central Respiratory Rhythm”, A. L. Bianchi, M. Denavit-Saubié, eds., MTP Press Ltd., Lancaster.Google Scholar
  13. Dussardier, M., 1985, An overview of backgrounds and themes for research in neurogenesis of respiratory rhythm, in: “Neurogenesis of Central Respiratory Rhythm”, A. L. Bianchi, M. Denavit-Saubie, eds., MTP Press Ltd., Lancaster.Google Scholar
  14. Eccles, J. C., 1986, Chemical transmission and Dale’s principle, Progr. Brain Res. 68: 3.CrossRefGoogle Scholar
  15. Euler, C., von, 1986, Brain stem mechanisms for generation and control of breathing pattern, Handbook of Physiology, The Respiratory System I I, American Physiological Scociety, Washington, DCGoogle Scholar
  16. Feldman, J. L., McCrimmon, D. R., Speck, D. F., Smith, J. C., and Ellenberger, H. H., 1985, Generation of respiratory pattern in mammals, in: “Nobel Conference 1985 on Neurobiology of the Control of Breathing”, Karolinska Institutet, Stockholm, no. 29.Google Scholar
  17. Foutz, A. S., Boudinot, E., Morin-Surun, M.P., Champagnat, J., Gonsalves, S. F., Denavit-Saubié, M., 1987, Excitability of “silent” respiratory neurons during sleep-walking states: an iontophoretic study in undrugged chronic cats, Brain Res. 404: 10.PubMedCrossRefGoogle Scholar
  18. Fuxe, K., Agnati, L. F., Härfstrand, A., Mutt, V., Anderson, K., Hökfelt, T., Vale, W., Brown, M., and River, J., 1982, Cardiovascular and respiratory actions of somatostatin peptides following intracisternal injection into the a-chloralose anesthetized rat, Neurosci. Lett., Suppl. 10: 189.Google Scholar
  19. Gauthier, P., Monteau, R., and Dussardier, M., 1983, Inspiratory onswitch evoked by stimulation of mesencephalic structures: a patterned response, Exp. Brain Res. 51: 261.PubMedCrossRefGoogle Scholar
  20. Grunstein, M. M., Hazinski, T. A. and Schlueter, M. A., 1981, Respiratory control during hypoxia in newborn rabbits: implied action of endorphins, J. Appl. Physiol. 51: 122.PubMedGoogle Scholar
  21. Harris-Warrick, R. M., and Flamm, R. E., 1986, Chemical modulation of a small central pattern generator circuit, Trends Neurosci. 9: 432.CrossRefGoogle Scholar
  22. Hedner, J., 1983, Neuropharmacological aspects of central respiratory regulation, Acta Physiol. Scand., Suppl. 524.Google Scholar
  23. Hökfelt, T., Johansson, 0., and Goldstein, M., 1984, Chemical anatomy of the brain, Science 225: 1326.Google Scholar
  24. Holaday, J. W., and Faden, A. I., 1980, Naloxone acts at central opiate receptors to reverse hypotension, hypothermia, and hypoventilation in spinal shock, Brain Res. 189: 295.PubMedCrossRefGoogle Scholar
  25. Hukuhara, T., Jr., 1973, Neuronal organization of the central respiratory mechanisms in the brain stem of the cat, Acta Neurobiol. Exp. 33: 219.Google Scholar
  26. Iversen, L. L., 1986, Chemical signalling in the nervous system, Progr. Brain Res. 68: 15.CrossRefGoogle Scholar
  27. Jack, J. J. B., Redman, S.J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents, J. Physiol. 321: 65.PubMedGoogle Scholar
  28. Janczewski, W. A. and Grieb, P., 1986, Naloxone enhances respiratory output in rabbits with various brainstem sections, Bull. Europ. Physiopath. Resp. 22, Suppl.: 8.Google Scholar
  29. Jean, A., 1984, Brainstem organization of the swallowing network, Brain Behavior Evol. 25: 109.CrossRefGoogle Scholar
  30. Karczewski, W. A. and Gromysz, H., 1980, The “Split Respiratory Centre”. Lessons from brainstem transections, Adv. Physiol. Sci., vol. 10 “Respiration”, p. 587.Google Scholar
  31. Kessler, J. P., and Jean, A., 1986, Inhibitory influence of monoamines and brainstem monoaminergic regions in the medullary swallowing reflex, Neurosci. Letters 65: 41.CrossRefGoogle Scholar
  32. Kuhar, M. J., 1985, The mismatch problem in receptor mapping studies, Trends Neurosci. 27: 190.CrossRefGoogle Scholar
  33. Kumazawa, T., Tadaki, E. and Kim, K., 1980, A possible participation of endogenous opiates in respiratory reflexes induced by thin-fiber muscular aferents, Brain Res. 199: 244.PubMedCrossRefGoogle Scholar
  34. Kurihara, M., Saavedra, J. M. and Shigematzu, K., 1987, Localization and characterization of atrial natriuretic peptide binding sites in discrete area of rat brain and pituitary gland by quantitative autoradiography, Brain Res. 408: 31.PubMedCrossRefGoogle Scholar
  35. Laguzzi, R., Reiss, D. J., and Talman, W. T., 1984, Modulation of cardiovascular and electrocortical activity through serotoninergic mechanisms in the nucleus tractus solitarius of the rat, Brain Res. 304: 321.PubMedCrossRefGoogle Scholar
  36. Legendre, P., McKenzie, J. S., Dupouy, B. and Vincent, J. D., 1985, Evidence for bursting pacemaker neurones in cultured spinal cord cells, Neurosci. 16: 753.CrossRefGoogle Scholar
  37. LlinAs, R. and Yarom, Y., 1980, Electrophysiological properties of mammalian inferior olivary cells in vitro, in: “The Inferior Olivary Nucleus: Physiology and Anatomy”, J. Courville et al., eds., Raven Press, New York.Google Scholar
  38. Long, S., Duff in, J., 1986, The neuronal determinants of respiratory rhythm, Progr.Neurobiol. 27: 101.Google Scholar
  39. Lundberg, J. M., and Hökfelt, T., 1983, Coexistence of peptides and classical neurotransmitters, Trends Neurosci. 6: 325.CrossRefGoogle Scholar
  40. McCrimmon, D. R., Feldman, J. L., Speck, D. F., Ellenberger, H. H., Smith, J. C. and Weese-Meyer, D., 1985, Functional heterogeneity of dorsal, ventral and pontine respiratory groups revealed by micropharmacological techniques, in: “Nobel Conference 1985 on Neurobiology of the Control of Breathing”, Karolinska Institutet, Stockholm, no. 25.Google Scholar
  41. McGeer, P. L., Eccles, J. C., and McGeer, E. G., 1978, “Molecular Neurobiology of Mammalian Brain”, Plenum Press, New York.CrossRefGoogle Scholar
  42. McQueen, D., S., 1983, Opioid peptide interactions with respiratory and circulatory systems, Br. Med. Bull. 39: 77.Google Scholar
  43. Millhorn, D. E., Hökfelt, T., Seroogy, K., Oertel, W., and Verhofstad, A. A. J., 1987, Immunohistochemical evidence for colocalization of gamma-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord, Brain Res. 410: 179.PubMedCrossRefGoogle Scholar
  44. Moss, I. R. and Scarpelli, E. M., 1984, CO2 and naloxone modify sleep/wake state and activate breathing in the acute fetal lamb preparation, Respir. Physiol. 55: 325.PubMedCrossRefGoogle Scholar
  45. Mueller, R. A., Lundberg, D. B. A., Breese, G. R., Hedner, J., Hedner, T., and Jonason, J., 1982, The neuropharmacology of respiratory control, Pharmacol. Revs. 34: 255.Google Scholar
  46. Pokorski, M., Grieb, P. and Wideman, J., 1981, Opiate system influences central respiratory chemoreceptors, Brain Res. 211: 221.PubMedCrossRefGoogle Scholar
  47. Quattrochi, J. J., Rho, J. H., 1985, Three-dimensional tissue reconstruction reveals integrative structural features among neurons within central respiratory centers of the brainstem, in: “Neurogenesis of Central Respiratory Rhythm”, A. L. Bianchi, M. Denavit-Saubie, eds., MTP Press Ltd., Lancaster.Google Scholar
  48. Robertson, H. A., Leslie, R. A., and McDonald, T. J., 1986, PYY receptors in the medulla — autoradiographic studies, in: “Neurobiology of the Nucleus of the Solitary Tract, Int. Satellite Symposium of X Annual Meeting of ENA”, Marseillie.Google Scholar
  49. Santiago, T. V. and Edelman, N. H., 1985, Opioids and breathing, J. Appl. Physiol. 59: 1675.PubMedGoogle Scholar
  50. Sneddon, P., and Westfall, D. P., 1984, Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens, J. Physiol. 347: 561.PubMedGoogle Scholar
  51. Snyder, S., 1977, Opiate receptors and internal opiates, Sci. Am. 236: 44.PubMedCrossRefGoogle Scholar
  52. Viala, D. and Freton, E., 1983, Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions, Exp. Brain Res. 49: 247.PubMedCrossRefGoogle Scholar
  53. Viveros, 0. H., Diliberto, E. J., and Daniels, A. J., 1983, BiochemicalGoogle Scholar
  54. and functional evidence for the cosecretion of multiple messengers from single and multiple compartments, Fed. Proc. 42: 2923.Google Scholar
  55. Vizi, E.S., 1984, “Non-Synaptic Interactions betwen Neurons: Modulation of Chemical Transmission”, John Wiley, New York.Google Scholar
  56. Wamsley, J. K., 1983, Opioid receptors: autoradiography, Pharmacol. Rev., 35: 69.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Paweł Grieb
    • 1
  1. 1.Department of NeurophysiologyPolish Academy of Sciences Medical Research CentreWarsawPoland

Personalised recommendations