Possible Implication of N. Parabrachialis in Opioid-Mediated Respiratory Suppression Induced by Thin-Fiber Muscular Afferents

  • Takao Kumazawa
  • Taijiro Hirano
  • Eiko Tadaki
  • Yasuko Kozaki
  • Kunihiro Eguchi


The great majority of thin-fiber muscular afférents are of the polymodal receptor type, signaling nociceptive information. Arterial injection of various algesic substances into the gastrocnemius muscle of anesthetized, spontaneously ventilated dogs, causes an increase in minute respiratory volume similar to increases observed in discharge rates of muscular polymodal receptors in response to the same stimulus.2 Such findings suggest an involvement of the muscular polymodal receptors in the respiratory response.


Kainic Acid Respiratory Suppression Excitatory Amino Acid Receptor Kainic Acid Injection Minute Respiratory Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kumazawa and K. Mizumura, Thin-fiber receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog, J.Physiol.(Lond.) 273:179(1977).Google Scholar
  2. 2.
    K. Mizumura and T. Kumazawa, Reflex respiratory response induced by chemical stimulation of muscle afferents, Brain Res. 109:402(1976).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Kumazawa, E. Tadaki, K. Mizumura, and K. Kim, Post-stimulus facilitatory and inhibitory effects on respiration induced by chemical and electrical stimulation of thin-fiber muscular afferents in dogs, Neurosci.Lett. 35:283(1983).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Kumazawa and E. Tadaki, Two different inhibitory effects on respiration by thin-fiber muscular afferents in cats, Brain Res. 272:364(1983).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Kumazawa, E. Tadaki, and K. Kim, A possible participation of endogenous opiates in respiratory reflexes induced by thin-fiber muscular afferents, Brain Res. 199:244(1980).PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Kozaki, D. Simbulan, E. Tadaki, and T. Kumazawa, Effect of enkephalinase inhibitors on reflex respiratory suppression induced by thin-fiber muscular afferents, Environ. Med. 31:55(1987).Google Scholar
  7. 7.
    T. Kumazawa, K. Eguchi, and E. Tadaki, Naloxone-reversible respiratory inhibition induced by muscular thin-fiber afferents in decerebrated cats, Neurosci.Lett. 53:81(1985).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Eguchi, E. Tadaki, D. Simbulan, Jr., and T. Kumazawa, Respiratory depression caused by either morphine microinjection or repetitive electrical stimulation in the region of the nucleus parabrachialis of cats, Pflugers Arch. 409:367(1987).PubMedCrossRefGoogle Scholar
  9. 9.
    A.L. Berman, “The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates,” The University of Wisconsin Press (1968).Google Scholar
  10. 10.
    J.T. Coyle, M.E. Molliver, and M.J. Kuhar, In situ injection of kainic acid: a new method for selectively lesioning neuronal cell bodies while sparing axons of passage, J.Comp.Neurol. 180:301(1978).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Denavit-Saubie, D. Riche, J. Champagnat, and J.C. Velluti, Functional and morphological consequences of kainic acid microinjections into a pontine respiratory area of the cat, Neuroscience 5:1609(1980).PubMedCrossRefGoogle Scholar
  12. 12.
    M.-P. Morin-Surun, J. Champagnat, E. Boudinot, and M. Denavit-Saubie, Differentiation of two respiratory areas in the cat medulla using kainic acid, Respir.Physiol. 58:323(1984).PubMedCrossRefGoogle Scholar
  13. 13.
    A.J. Berger and K.A. Cooney, Ventilatory effects of kainic acid injection of the ventrolateral solitary nucleus, J.Appl.Physiol. 52:131(1982).PubMedGoogle Scholar
  14. 14.
    N.I. Kiskin, O.A. Krishtal, and A.Y. Tsyndrenko, Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them, Neurosci.Lett. 63:225(1986).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Miura and K. Takayama, Circulatory and respiratory responses to glutamate stimulation of the lateral parabrachial nucleus of the cat, J.Auton.Nerv.Syst. 32:121(1991).PubMedCrossRefGoogle Scholar
  16. 16.
    M.I. Cohen, Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation, J. Physiol. (Lond.) 217:133(1971)Google Scholar
  17. 17.
    F. Bertrand and A. Hugelin, Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms, J.Neurophysiol. 34:189(1971).PubMedGoogle Scholar
  18. 18.
    C. von Euler, I. Marttila, J.E. Remmers, and T. Trippenbach, Effects of lesions in the parabrachial nucleus on the mechanisms for central and reflex termination of inspiration in the cat, Acta Physiol. Scand. 96:324(1976).CrossRefGoogle Scholar
  19. 19.
    J.K. Hylden, H. Hayashi, G.J. Bennett, and R. Dubner, Spinal lamina I neurons projecting to the parabrachial area of the cat midbrain, Brain Res. 336:195(1985).PubMedCrossRefGoogle Scholar
  20. 20.
    D.G. Standaert, S.J. Watson, R.A. Houghten, and C.B. Saper, Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat, J.Neurosci. 6:1220(1986).PubMedGoogle Scholar
  21. 21.
    H. Hayashi and T. Tabata, Distribution of trigeminal sensory nucleus neurons projecting to the mesencephalic parabrachial area of the cat, Neurosci.Lett. 122:75(1991).PubMedCrossRefGoogle Scholar
  22. 22.
    S.F. Atweh and M.J. Kuhar, Autoradiographic localization of opiate receptors in rat brain. II. The brain stem, Brain Res. 129:1(1977).Google Scholar
  23. 23.
    N. Sales, D. Riche, B.P. Roques, and M. Denavit-Saubie, Localization of muand delta-opioid receptors in cat respiratory areas: an autoradiographic study, Brain Res. 344:382(1985).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Ibuki, H. Okamura, M. Miyazaki, N. Yanaihara, E.A. Zimmerman, and Y. Ibata, Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata), J. Comp. Neurol. 279:445(1989).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Kumazawa, Nociceptors and autonomic nervous control, Asian Med.J. 24:632(1981).Google Scholar
  26. 26.
    J.O. Dostrovsky, J.W. Hu, B.J. Sessle, and R. Sumino, Stimulation sites in periaqueductal gray nucleus raphe magnus and adjacent regions effective in suppressing oral-facial reflexes, Brain Res. 252:287(1982).PubMedCrossRefGoogle Scholar
  27. 27.
    C.M. Haws, A.M. Williamson, and H.L. Fields, Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation, Brain Res. 483:272(1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Takao Kumazawa
    • 1
  • Taijiro Hirano
    • 1
  • Eiko Tadaki
    • 1
  • Yasuko Kozaki
    • 1
  • Kunihiro Eguchi
    • 1
  1. 1.Department of Neural Regulation, Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan

Personalised recommendations