Advertisement

Effect of Femoral Blood Flow Occlusion and Release on Ventilation during Exercise and Recovery

  • Takayoshi Yoshida
  • Masahiko Ichioka
  • Mamoru Chida
  • Kouichi Makiguchi
  • Naoko Tojo
  • Ryuji Suga
  • Kouichi Tsukimoto
  • Jun-ichi Eguchi

Abstract

Since Zuntz and Geppert11 proposed that exercise-induced hyperpnea is caused by a blood-borne substance, there has been a debate about roles of neural and humoral mechanisms in this phenomenon. Occlusion of blood flow to the leg has been used to eliminate humoral factors. However, this method has led to conflicting results regarding the mechanism of exercise-induced hyperpnea2, 4–7.

Keywords

Carotid Body Ventilatory Response Arterial Blood Sample Lactate Threshold Humoral Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Band, D.M., & Linton, (1986) The effect of potassium on carotid body chemoreceptor discharges in the anaesthetized cat. J. Physiol., 381: 39–47.PubMedGoogle Scholar
  2. 2.
    Innes, JA., Solarte, I., Huszczuk, A., Yeh, E., Whipp, B.J. & Wasserman, K. (1989) Respiration during recovery from exercise: effects of trapping and release of femoral blood now. J. Appl. Physiol., 67: 2608–2613.PubMedGoogle Scholar
  3. 3.
    Paterson, D.J., Friedland, J.S., Bascom, D.A., Clement, I.D., Cunningham, D.A., Painter, R. & Robbins, P.A. (1990) Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McAdle’s syndrome. J. Physiol., 429: 339–348.PubMedGoogle Scholar
  4. 4.
    Rowell, L.B., Hermansen, L. & Blackmon, J.R. (1976) Human cardiovascular and respiratory responses to graded muscle ischemia. J. Appl. Physiol., 41: 693–701.PubMedGoogle Scholar
  5. 5.
    Rowell, L.B. & O’Leary, D.S. (1990) Reflex control of the circulation during exercise. chemorcflexes and mechanorefiexes. J. Appl. Physiol., 69: 407–418.PubMedGoogle Scholar
  6. 6.
    Sargeant, A.J., Rouleau, M.Y., Sutton, J.R. & Jones, N.L. (1981) Ventilation in exercise studied with circulatory occlusion. J. Appl. Physiol., 50: 718–723.PubMedGoogle Scholar
  7. 7.
    Stanley, W.C., Lee, W.R. & Brooks, G.A. (1985) Ventilation studied with circulatory occlusion during two intensities of exercise. Eur. J. Appl. Physiol., 54: 269–277CrossRefGoogle Scholar
  8. 8.
    Wasserman, K., Whipp, B.J. & Castagna, J. (1974) Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol., 36: 457–464.PubMedGoogle Scholar
  9. 9.
    Whipp, B.J. & Wasserman, K. (1980) Carotid bodies and ventilatory control dynamics in man. Fed. Proc., 39: 2628–2673.Google Scholar
  10. 10.
    Yoshida, T., Chida, M.L. Ichioka, M., Makiguchi, K., Eguchi, J. & Udo, M. (1990) Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery. Eur. J. Appl. Physiol., 61: 193–196.CrossRefGoogle Scholar
  11. 11.
    Zuntz N. & Geppert, J. (1986) Uber die Natur der normalen Aremreize den Ort ihrer Wirkung. Pflugers. Arch. Ges Physiol., 38: 337–338.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Takayoshi Yoshida
    • 1
  • Masahiko Ichioka
    • 2
  • Mamoru Chida
    • 2
  • Kouichi Makiguchi
    • 2
  • Naoko Tojo
    • 2
  • Ryuji Suga
    • 2
  • Kouichi Tsukimoto
    • 2
  • Jun-ichi Eguchi
    • 3
  1. 1.Exercise Physiology Laboratory, Faculty of Health and Sport SciencesOsaka UniversityToyonaka, OsakaJapan
  2. 2.Division of Respiratory Physiology and MedicineTokyo Medical and Dental UniversityTokyoJapan
  3. 3.Health and Sports CenterKomazawa UniversityTokyoJapan

Personalised recommendations