Advertisement

Effects of Testosterone on Hypoxic Ventilatory and Carotid Body Neural Responsiveness

  • Koichiro Tatsumi
  • Bernard Hannhart
  • Cheryl K. Pickett
  • John V. Weil
  • Lorna G. Moore

Abstract

Hypoxic ventilatory response (HVR) is known to be influenced by administration of testosterone but prior studies report conflicting results1, 2. White et al.1 reported an augmented HVR after testosterone replacement in hypogonadal males, whereas Matsumoto et al.2 found HVR decreased after testosterone treatment. In addition, the site at which the hormone acts remains unclear. No studies have been undertaken to determine whether testosterone alters carotid body neural responsiveness to hypoxia and, if so, whether it acts directly on the peripheral chemoreceptors and/or on the central nervous system translation of carotid sinus nerve (CSN) output into ventilation.

Keywords

Carotid Body Anesthetize Animal Testosterone Replacement Testosterone Treatment Peripheral Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.P. White, B.K. Schneider, R.J. Santen, M. McDermott, C.K. Pickett, C.W. Zwillich, and J.V. Weil. Influence of testosterone on ventilation and chemosensitivity in male subjects. J Appl Physiol 59: 1452–1457 (1985)PubMedGoogle Scholar
  2. 2.
    A.M. Matsumoto, R.E. Sandblom, R.B. Schoene, K.A. Lee, E.C. Giblin, D.J. Pierson, and W.J. Bremner. Testosterone replacement in hypogonadal men: effects on obstructive sleep apnoea, respiratory drives and sleep. Clin Endocrinology 22: 713–721 (1985)CrossRefGoogle Scholar
  3. 3.
    K. Tatsumi, C.K. Pickett, and J.V. Weil. Attenuated carotid body hypoxic sensitivity after prolonged hypoxic exposure. J Appl Physiol 70: 748–755 (1991)PubMedGoogle Scholar
  4. 4.
    D.E. Dick, J.R. Meyer, and J.V. Weil. A new approach to quantitation of whole nerve bundle activity. J Appl Physiol 36: 393–397 (1974)PubMedGoogle Scholar
  5. 5.
    M. Vizek, C.K. Pickett, and J.V. Weil. Interindividual variation in hypoxic ventilatory response; potential role of carotid body. J Appl Physiol 63: 1884–1889 (1987)PubMedGoogle Scholar
  6. 6.
    D.P. White, N.J. Douglas, C.K. Pickett, J.V. Weil, and C.W. Zwillich. Sexual influence on the control of breathing. J Appl Physiol 54: 874–879 (1983)PubMedGoogle Scholar
  7. 7.
    D. Aggarwal, H.T. Milhorn Jr., and L.Y. Lee. Role of the carotid chemoreceptors in the hyperpnea of exercise in the cat. Respir Physiol 26:147–155(1976)PubMedCrossRefGoogle Scholar
  8. 8.
    R.Q. Davies, and S. Lahiri. Abscence of carotid chemoreceptor response during hypoxic exercise in the cat. Respir Physiol 18: 92–100 (1973)PubMedCrossRefGoogle Scholar
  9. 9.
    E. Neil, R.G. O’Regan. Efferent and afferent impulse activity recorded from few fibre preparations of otherwise intact sinus and aortic nerves. J Physiol London 215: 33–47 (1971)PubMedGoogle Scholar
  10. 10.
    S.R. Sampson, and T.J. Biscoe. Efferent control of the carotid body chemoreceptor. Experientia 26: 261–262 (1970)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Koichiro Tatsumi
    • 1
  • Bernard Hannhart
    • 1
  • Cheryl K. Pickett
    • 1
  • John V. Weil
    • 1
  • Lorna G. Moore
    • 1
  1. 1.Cardiovascular Pulmonary Research LaboratoryUniversity of Colorado Health Sciences CenterDenverUSA

Personalised recommendations