Solitonic Solutions of the Su(2) Nambu-Jona-Lasinio Model with Vector Mesons

  • K. Goeke
  • F. Döring
  • E. Ruiz Arriola
  • C. Schüren


The large N c expansion has been a useful device in order to treat QCD in the non-perturbative regime. In the leading order, this expansion allows to interpret baryons as solitons of a yet unknown effective mesonic action1. This motivates the use of specific effective models exhibiting one of the most salient features of QCD, dynamical chiral symmetry breaking. The Nambu—Jona-Lasinio model2 incorporates this feature and thus has been studied intensively in recent years in the vacuum-, meson- and baryon-sector3,4. In the large N c . The generalization of the NJL model including vector mesons allows to describe not only a wider meson spectroscopy, but also to implement important phenomenological principles such as Sakurai’s Universality and Vector Meson Dominance realized through Current-Field Identities7,8,9. In addition, almost all heuristic attempts to relate this model to QCD require the inclusion of vector mesons10,11 In previous works the role of the vector mesons in the solitonic sector of the NJL model has been partially analysed, either in a non chirally symmetric version including the ρ meson only12, or in chirally invariant forms with ω 13 or ρ and A1 14,15 mesons. In all cases, the free parameters were fixed via a heat kernel expansion up to second order. Of course, this corresponds to neglect the momentum dependence of the meson propagators. Due to the smallness of the pion mass this is an accurate procedure in the σ, π case. However, vector mesons masses are considerably higher and therefore the validity of such an approximation is at least questionable. As it has been pointed out in Ref. 16, a full momentum dependent treatment of mesonic correlation functions of the bosonized NJL model leads to considerable differences as compared to a heat kernel expansion up to second order. Among others, the corresponding cut-off gets reduced substantially.


Vector Meson Solitonic Solution Baryon Number Valence Quark Constituent Quark Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, Nucl. Phys. B 223 (1983) 442, 433.Google Scholar
  2. 2.
    J. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345; 124 (1961) 246.ADSCrossRefGoogle Scholar
  3. 3.
    For reviews on the meson sector see e.g. U. Vogl and W. Weise, Progress in Particle and Nuclear Physics vol. 27 (1991) 195 and S. P. Klevansky, Rev. Mod. Phys. 64 (1992) 649.CrossRefGoogle Scholar
  4. 4.
    for a review on the baryon sector see e.g. Th. Meißner, E. Ruiz Arriola, K. Goeke, Rep. Prog. Phys. (to appear) and references thereinGoogle Scholar
  5. 5.
    H. Reinhardt and R. Wünsch, Phys. Lett. B 215 (1988) 577; 230 (1989) 93.CrossRefGoogle Scholar
  6. 6.
    Th. Meißner, F. Grümmer and K. Goeke, Phys. Lett. B 227 (1989) 296;Google Scholar
  7. Th. Meißner, F. Grümmer and K. Goeke, Phys. LettAnn. Phys. 202 (1990) 297.Google Scholar
  8. 7.
    H. Kleinert, Erice Summer Institute 1976, Understanding the fundamental constituents of matter, Plenum Press, NY (1978) A. Zichichi (ed.) p. 289Google Scholar
  9. 8.
    D. Ebert and H. Reinhardt, Nucl. Phys. B 271 (1986) 188.Google Scholar
  10. 9.
    M. Wakamatsu and W. Weise, Z. Phys. A 331 (1988) 173.Google Scholar
  11. 10.
    R.Ball, Workshop on “Skyrmions and Anomalies”, Mogillany, Poland 1987, eds. M. Jezabak and M. Praszalowicz (World Sientific, Singapore)Google Scholar
  12. 11.
    A. Dhar and R. S. Wadia, Phys. Rev. Lett. 52 (1984) 959.ADSCrossRefGoogle Scholar
  13. 12.
    R. Alkofer and H. Reinhardt, Phys. Lett. B 244 (1990) 461Google Scholar
  14. 13.
    C. Schüren, E. Ruiz Arriola and K. Goeke, Phys. Lett. B 287 (1992) 283.Google Scholar
  15. 14.
    F. Döring, E. Ruiz Arriola and K. Goeke, to appear in Z. Phys A.Google Scholar
  16. 15.
    R. Alkofer, H. Reinhardt, H. Weigel and U. Zückert, Phys. Rev. Lett. 69 (1992) 1874Google Scholar
  17. 16.
    M. Jaminon, R. Mendez-Galain, G. Ripka, P. Stassart, Nucl. Phys. A 537 (1992) 418ADSCrossRefGoogle Scholar
  18. 17.
    A. H. Blin, B. Hiller, M. Schaden, Z. Phys. A 331 (1988) 75Google Scholar
  19. 18.
    S. Kahana and G. Ripka, Nucl. Phys. A 419 (1984) 462.Google Scholar
  20. 19.
    W. Broniowski and M. Banerjee, Phys. Lett. 158 B, 335 (1985); Phys. Rev. D 34 (1986) 849.CrossRefGoogle Scholar
  21. 20.
    E. Ruiz Arriola, P. Alberto, K. Goeke, J. M. Urbano, Phys. Lett. B 236 (1990) 381Google Scholar
  22. 21.
    U. G. Meißner, I. Zahed, Phys. Rev. Lett. 56 (1986) 1035, Z. Phys. A 327 (1987) 5Google Scholar
  23. 22.
    P. Sieber, Th. Meißner, F. Grümmer, K. Goeke, Nucl. Phys. B in pressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • K. Goeke
    • 1
  • F. Döring
    • 1
  • E. Ruiz Arriola
    • 1
    • 2
  • C. Schüren
    • 1
  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochumGermany
  2. 2.Departamento de Fisica ModernaUniversidad de GranadaGranadaSpain

Personalised recommendations