Skip to main content
  • 75 Accesses

Abstract

In this talk, I wish to describe the method of QCD sum rules as a means of taking into account strong interaction effects in physical phenomena in which strong interactions, as described by quantum chromodynamics (QCD) among quarks and gluons, play an important role. The determination of the isovector and isoscalar axial coupling constants, g A and g S A , via the method of QCD sum rules is used to illustrate the method. The determination of the neutron-proton mass difference from the method serves as another interesting example. Our present efforts focus on the possibility of employing the method to treat nonleptonic weak interaction problems, including parity-violating πNN, ρNN, and ωNN couplings, decays of heavy mesons or of heavy baryons, etc. Throughout the present talk, I shall discuss primarily the issues related to the nucleon structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Shifman, A. J. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 385, 448 (1979).

    Article  ADS  Google Scholar 

  2. M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178, 1478 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  3. B. L. Ioffe and A. V. Smilga, Nucl. Phys. B232. 109 (1984).

    Article  ADS  Google Scholar 

  4. V. M. Belyaev and Ya. I. Kogan, Pis’ma Zh. Eksp. Teor. Fiz. 37, 611 (1983).

    Google Scholar 

  5. V. M. Belyaev and Ya. I. Kogan, JETP Lett. 37, 730 (1983)

    ADS  Google Scholar 

  6. C. B. Chiu, J. Pasupathy, and S. J. Wilson, Phys. Rev. D32, 1786 (1985).

    ADS  Google Scholar 

  7. E. M. Henley, W-Y. P. Hwang, and L. S. Kisslinger, Phys. Rev. D46, 431 (1992).

    ADS  Google Scholar 

  8. J. Ashman et al/, Phys. Lett. B206 364 (1988).

    Google Scholar 

  9. J. Ellis and R. L. Jaffe, Phys. Rev. D9, 1444 (1974).

    Article  ADS  Google Scholar 

  10. T.-P. Cheng and L.-F. Li, Carnegie-Mellon University preprint CMU-HEP-2 (1991);

    Google Scholar 

  11. J. M. Gaillard and G. Sauvage, Annu. Rev. Nucl. Part. Sci. 34, 351 (1984).

    Article  ADS  Google Scholar 

  12. V. M. Belyaev, B. L. Ioffe, and Ya. I. Kogan, Phys. Lett. 151B, 290 (1985).

    Google Scholar 

  13. S. Gupta, M.V.N. Murthy, and J. Pasupathy, Phys. Rev. D39, 2547 (1989).

    ADS  Google Scholar 

  14. B. L. Ioffe, Nucl. Phys. B188, 317 (1981);

    Article  ADS  Google Scholar 

  15. B. L. Ioffe, Nucl. Phys. [E] B191, 591 (1981);

    Article  ADS  Google Scholar 

  16. V. M. Belyaev and B. L. Ioffe, Zh. Eksp. Teor. Fiz. 83, 876 (1982).

    Google Scholar 

  17. V. M. Belyaev and B. L. Ioffe, Sov. Phys. JETP 56, 493 (1982)

    Google Scholar 

  18. E. M. Henley, W-Y. P. Hwang, and L. S. Kisslinger, Chin. J. Phys. (Taipei) 30, 529 (1992).

    Google Scholar 

  19. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and M. B. Voloshin, and V. I. Zakharov, Nucl. Phys. B237, 525 (1984).

    Article  ADS  Google Scholar 

  20. A. A. Pivovarov and L.R. Surguladze, Nucl. Phys. B360, 97, (1991).

    Article  ADS  Google Scholar 

  21. M. A. Shifman, Pis’ma, Zh. Eksp. Teor. Fiz. 24, 376 (1976).

    Google Scholar 

  22. M. A. Shifman, Pis’ma, TETP Lett. 24, 341 (1976)

    ADS  Google Scholar 

  23. K.-C. Yang, W-Y. P. Hwang, E. M. Henley, and L. S. Kisslinger, Phys. Rev. D47, 3001 (1993). Note that the two figures, Figs. 8 and 9, should be interchanged.

    Google Scholar 

  24. J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).

    Article  ADS  Google Scholar 

  25. T. Hatsuda, H. Hogaasen, and M. Prakash, Phys. Rev. C42, 2212 (1990).

    ADS  Google Scholar 

  26. W-Y. P. Hwang, Phys. Rev. D31, 2826 (1985);

    ADS  Google Scholar 

  27. E. M. Henley and G. A. Miller, Nucl. Phys. A518, 207 (1990).

    Article  Google Scholar 

  28. L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep. 127, 1 (1985).

    Article  ADS  Google Scholar 

  29. E. M. Henley, W-Y. P. Hwang, and L. S. Kisslinger, work in progress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hwang, WY.P. (1994). QCD Sum Rules and the Nucleon Structure. In: Goeke, K., Hwang, WY.P., Speth, J. (eds) Contemporary Topics in Medium Energy Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9835-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9835-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9837-1

  • Online ISBN: 978-1-4757-9835-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics