Advertisement

Anomaly Lagrangian with Nucleon

  • Yeu-Chung Lin

Abstract

It has been thirty three years since the discovery of ABJ anomaly1. The phenomena of ABJ anomaly realized in the pseudoscalar meson sector such as \({\pi ^0} \to \gamma \gamma \), \(\gamma \to {\pi ^0}{\pi ^ + }{\pi ^ - }\) and \({K^{ + \_}}{K^ - } \to {\pi ^0}{\pi ^ + }{\pi ^ - }\) have been extensively studied2 and the effective lagrangian for the gauged anomaly has been constructed by topological arguement3. The origin of ABJ anomaly has been related to the non-invariance of fermion measure under the chiral transformation4. It is understood that the occurence of chiral anomaly is a general phenomenon for theories involving fermion unless there are cancellations among the representations of matter fermion fields. Then it is fair to ask what is the realization of ABJ anomaly in baryon sector, and what is the form of the effective lagrangian it corresponds to. After all, baryons are fermions and chiral symmetry is the major tool to study the low energy QCD phenonmenon.

Keywords

Compton Scattering Conventional Form Anomalous Magnetic Moment Axial Current Skyrme Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1S. L. Adler, Phys. Rev. 177 2426 (1969).Google Scholar
  2. 2J. Wess and B. Zumino, Phys. Lett.B37, 95 (1971). 3E. Witten, Nucl. Phys. B223 422 (1983).Google Scholar
  3. 4K. Fujikawa, Phys. Rev. Lett. 42 1195 (1979). 5V. Bernard and U. Meissner, BUTP-92/15 (1992).Google Scholar
  4. 6F. E. Low, Phys. Rev. 96 1433 (1954). M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96 1433 (1954).Google Scholar
  5. 7E. Mazzucato et al,Phys. Rev. Lett. 57 3144 (1986). 8R. Beck et al,Phys. Rev. Lett. 65 1841 (1990).Google Scholar
  6. 9A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B36 589 (1972). P. de Banest, Nucl. Phys. B24 633 (1970).Google Scholar
  7. 10.
    R. Davidson and N. C. Mukhopadhyoy, Phy. Rev. Lett. 60, 748 (1988). H. W. L. Naus, Phy.. Rev. C43, 1207 (1989).Google Scholar
  8. 11V. Bernard, N. Kaiser, J. Gasser and U. Meissner, Phys. Lett. 268B 291 (1991). 12Y C. Lin and C. W. Huang, Phys. Lett. B272 363 (1991).Google Scholar
  9. 13T. H. R. Skyrme, Proc. R. Soc. London, Ser. A260 127 (1961).Google Scholar
  10. 14G. W. Adkins, C. R. Nappi and E. Witten, Nucl. Phys. B228 552 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Yeu-Chung Lin
    • 1
  1. 1.Department of PhysicsNational Central UniversityChung-LiTaiwan, Rep. of China

Personalised recommendations